DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: "PROBLEMORIENTIERTER UNTERRICHT" (Filter: Schlagwörter)
Anzahl der Treffer: 44
  • Satzgruppe des Pythagoras (B18-P-2203-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nachdem die Lehrperson das Thema und den Ablauf der nächsten zwei Lektionen bekannt gegeben hat, zeigt sie, was bei den Hausaufgaben hätte herauskommen müssen: a2 + b2= c2. Die Schüler...    mehr

    Nachdem die Lehrperson das Thema und den Ablauf der nächsten zwei Lektionen bekannt gegeben hat, zeigt sie, was bei den Hausaufgaben hätte herauskommen müssen: a2 + b2= c2. Die Schülerinnen und Schüler überprüfen, ob das auch für ihre Quadrate zutrifft. Bei allen sind die Flächen der beiden kleineren Quadrate zusammen etwa so groß, wie die Fläche des großen. Die Lehrperson hat die ausgeschnittenen Quadrate wieder mitgebracht und zeigt den Schülern einen ersten improvisierten Beweis, das diese Beobachtung stimmt. Sie wägt alle drei Haufen mit einer Briefwaage und tatsächlich sind die beiden Haufen mit den kleineren Quadraten fast gleich schwer, wie der Haufen mit den grossen Quadraten. Anschließend trägt die Lehrperson an der Moltonwand den Zerlegungsbeweis vor. Die Lehrperson stellt die Frage, wozu denn nun die Erkenntnis, dass in einem rechtwinkligen Dreieck die Quadrate über den beiden kürzeren Seiten die gleiche Fläche haben, wie das Quadrat über der längsten Seite, gebraucht werden könne und leitet so zum Übungsteil der Unterrichtsreihe über. Eine erste einschrittige Übungsaufgabe wird in der Klasse berechnet. Danach gibt die Lehrperson eine Vorgehensweise vor, wie solche Aufgaben zu lösen sind. Eine weitere einschrittige Übungsaufgabe lösen die Schülerinnen und Schüler selbständig, anschließend wird der Lösungsweg in der Klasse besprochen. Nun teilt die Lehrperson ein Arbeitsblatt aus, auf dem die Schülerinnen und Schüler gesuchte Seiten in verschiedenen geometrischen Figuren berechnen müssen. Bis zur Pause arbeiten die Schüler und Schülerinnen an diesen Aufgaben. (Projekt)     weniger

  • Satzgruppe des Pythagoras (B19-P-2204-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran...    mehr

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran: Wie hoch und/ oder breit darf ein am Boden zusammengebauter IKEA-Schrank sein, damit er in einem 223 cm hohen Zimmer aufgestellt werden kann. In Zweiergruppen überlegen sich die Schülerinnen und Schüler mit welchen der vorgegebenen Schränke das möglich ist. Nach einigen Minuten sammelt die Lehrperson die Meinungen der Schülerinnen und Schüler und hält sie auf einer Planskizze fest. Die Meinungen gehen weit auseinander. Nun haben die Schülerinnen und Schüler zwei Möglichkeiten wie sie weiterarbeiten wollen: Die einen schneiden die Planteile der Schränke aus, die andern suchen nach einer allgemeingültigen Formel und versuchen so explorativ herauszufinden, welcher der verschiedenen Schränke denn nun aufgestellt werden kann und welcher nicht und woran es liegen könnte, dass ein Schrank aufgestellt werden kann oder nicht. Im Plenum äußern sich die Schüler über ihre Erkenntnisse: Entscheidend ist die Diagonale. Die Lehrperson abstrahiert das Problem auf ein rechtwinkliges Dreieck, von dem man die Hypotenuse nicht kennt. Ein Schüler kennt den Satz des Pythagoras und nennt ihn als Lösungsvorschlag. Die Lehrperson stellt den Satz an der Wandtafel geometrisch dar und der Schüler rechnet vor, wie die Diagonale eines Schrankes mit dem Satz zu bestimmen ist. Danach fordert die Lehrperson die Schülerinnen und Schüler auf, die Diagonalen der anderen Schränke zu berechnen und so endlich zu bestimmen, welcher nun aufgestellt werden könne. Da sich nun alle einig sind, welcher Schrank in das Zimmer passt, übernehmen die Schülerinnen und Schüler die geometrischen Ausführungen in ihr Theorieheft. Dazu soll jeder für sich den Satz des Pythagoras in eigenen Worten formulieren. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    mehr

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    weniger

  • Unterrichtsaufzeichnung (RP18443_4a-2)

    Bestandteil von: VERA - Gute Unterrichtspraxis / Unterrichtsbeobachtung (Daten): VERA

    In dieser Stunde stehen die Fragen zu einem Zahlenschloss „Können wir das Schloss knacken?“ und „Wie viele Möglichkeiten finden wir?“ im Vordergrund. Die Lehrerin hat ihr abgeschlo...    mehr

    In dieser Stunde stehen die Fragen zu einem Zahlenschloss „Können wir das Schloss knacken?“ und „Wie viele Möglichkeiten finden wir?“ im Vordergrund. Die Lehrerin hat ihr abgeschlossenes Fahrrad mitgebracht und behauptet sie habe ihren Zahlencode vergessen, wisse aber noch die vier Zahlen und auch welche Zahl am Anfang steht. Die Schüler sollen nun alle Zahlenkombinationen in Partnerarbeit herausfinden. Die Lehrerin verteilt Karten, auf denen die Zahlen einzeln abgedruckt sind, sodass die Schüler die Kombinationen legen können, sowie Blätter zum Notieren der Lösungen. Schüler, die damit fertig sind, sollen als zweite Aufgabe alle Zahlenkombinationen finden, wenn nicht bekannt ist welche Ziffer die erste Ziffer ist. Die Lehrerin geht umher und fordert auf, die gefundenen Möglichkeiten zu sortieren. Im Sitzhalbkreis werden nun die Aufgaben besprochen. Die Schüler schreiben nun jeweils eine Lösung an die Tafel, drehen diese an einem Modellschloss und probieren es am Fahrradschloss aus. Nachdem alle Möglichkeiten erschöpft sind, stellt sich heraus, dass die vorgegebene Ziffer doch nicht die erste, sondern die letzte ist. Das Ausprobieren geht weiter bis sich das Schloss öffnet. Nun wird nach der Lösung der zweiten Aufgabe gefragt. Die Schüler sind sich uneinig und der richtige Lösungsweg wird kurz von einem Schüler genannt. (DIPF/ah)     weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation