DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: ERGEBNISSICHERUNG (Filter: Schlagwörter)
Anzahl der Treffer: 42
Filtern nach:
  • Satzgruppe des Pythagoras (B10-P-2110-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach der Pause erarbeitet die Lehrperson zusammen mit der Klasse mit Hilfe von Papierquadraten und Dreiecken an der Wandtafel einen Zerlegungsbeweis. Anschließend übernehmen die Sch...    mehr

    Nach der Pause erarbeitet die Lehrperson zusammen mit der Klasse mit Hilfe von Papierquadraten und Dreiecken an der Wandtafel einen Zerlegungsbeweis. Anschließend übernehmen die Schüler(innen) die Wandtafeldarstellung in ihr Heft. Wer den Hefteintrag beendet hat, beginnt selbständig ein Arbeitsblatt mit Vorbereitungsaufgaben zur Wurzelberechnung zu lösen. Im anschließenden Klassengespräch gibt die Lehrperson Tipps zum Runden und zeigt auf, dass aus negativen Zahlen keine Wurzeln gezogen werden können. Zum Schluss der Lektion gibt die Lehrperson noch einen Ausblick auf die nächste Geometrielektion, welche am folgenden Tag stattfinden wird. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B11-P-2111-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papie...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papier. In der Klasse werden - ohne diese schriftlich fest zu halten - kurz die Bezeichnungen im rechtwinkligen Dreieck angesprochen. Danach versuchen die Schülerinnen und Schüler in Gruppen an Hand der vorliegenden Dreiecke Verhältnisregeln, die im rechtwinkligen Dreieck gelten sollen, herauszufinden. Da der Satz des Pythagoras bei einigen Schülerinnen und Schüler bereits bekannt ist, bringen zwei der drei Schülergruppen in einer Sammlungsphase dann auch zur Sprache, dass die Summe der Flächen der Kathetenquadrate der Fläche des Hypotenusenquadrats entspricht. Auf Grund dieser Annahme füllen die Schülerinnen und Schüler eine Tabelle an der Wandtafel mit den Maßen ihrer Dreiecke aus. Mit diesen Berechnungen wird überprüft, dass die Summe der Kathetequadrate der vermessenen Dreiecke ziemlich genau ihren Hypotenusenquadraten entspechen. Anschließend stellt die Lehrperson diese Aussage mit der Pythagorasfigur an der Wandtafel bildlich dar und zeigt dann ein Computerprogramm, das beim Verschieben des rechten Winkels eines rechtwinkligen Dreiecks auf dem Thaleskreis sofort alle Seitenquadrate berechnet. Den mathematischen Beweis des Satzes kündigt die Lehrperson für die nächste Lektion an. Dann legt sie eine Folie auf den Hellraumprojektor, auf der alle wichtigen Aussagen dieses Theorieteils festgehalten sind. Die Schülerinnen und Schüler übernehmen das auf der Folie Beschriebene in ihr Theorieheft. Diejenigen Schülerinnen und Schüler, die mit Abschreiben fertig sind, beginnen selbständig mit einschrittigen Berechnugen von Seiten eines gegebenen rechtwinkligen Dreiecks. Vor dem Ende der Lektion werden die Hausaufgaben - diese ersten vier Dreiecksseiten zu berechnen und eine Vorbereitungsaufgabe für den Beweis der nächsten Lektion - erteilt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B11-P-2111-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion werden die Hausaufgaben kontrolliert und besprochen. Anschließend sollen die Schülerinnen und Schüler aus den Teilen, die sie auf diese Lektion ausgeschnitten ...    mehr

    Zu Beginn der Lektion werden die Hausaufgaben kontrolliert und besprochen. Anschließend sollen die Schülerinnen und Schüler aus den Teilen, die sie auf diese Lektion ausgeschnitten haben, zwei gleich große Quadrate legen, was auch allen gelingt. An Hand eines Puzzles, das ein Schüler auf den Hellraumprojektor gelegt hat, erkennen die Schülerinnen und Schüler sehr schnell, dass die beiden Quadrate gleich groß sein müssen und, wenn von jedem Quadrat die vier rechtwinkligen Dreiecke mit den Seiten a, b und c entfernt werden, beim einen großen Quadrat zwei kleine Quadrate mit den Flächen a2 und b2 und beim andern großen Quadrat ein Quadrat mit der Fläche c2 übrigbleiben, was beweist, dass der angenommene Satz richtig ist. Die Lehrperson schreibt diese Erkenntniss als Rechnug neben die gelegten Quadrate. Die Schülerinnen und Schüler kleben ihre Quadrate und Dreiecke in ihr Theorieheft und schreiben dazu die vorgegebene Rechnung. Anschließend üben die Schülerinnen und Schüler an den noch meist einschrittigen Übungsaufgaben weiter. Als Hausaufgabe sollen die Schülerinnen und Schüler einen zweiten Beweis führen. Anleitung dazu wurde von der Lehrperson ausgeteilt. (Projekt)     weniger

  • Satzgruppe des Pythagoras (B13-P-2113-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lehrperson betritt das Schulzimmer etwas verspätet, weshalb zu Beginn der Lektion das Mikrofon installiert wird. Danach wird in der Klasse der Inhalt der letzten Stunde während ein...    mehr

    Die Lehrperson betritt das Schulzimmer etwas verspätet, weshalb zu Beginn der Lektion das Mikrofon installiert wird. Danach wird in der Klasse der Inhalt der letzten Stunde während einer öffentlichen Phase aufgefrischt. Dabei wird von Schülern ein rechtwinkliges Dreieck an die Wandtafel skizziert, bei dem die Beschriftung stimmen soll, sodass die Seite c der Hypotenuse entspricht. Eine weitere Schülerin zeichnet die Flächenquadrate über den Seiten, und diese werden danach beschriftet mit a2, b2, c2. Darauf wird die Formel a2 + b2 = c2 an die Wandtafel geschrieben sowie deren Ableitungen. In der Folge formulieren verschiedene Schülerinnen und Schüler den Satz des Pythagoras in eigenen Worten. Die Lehrperson präsentiert die eigentliche Ausformulierung des Satzes und mehrere Schülerinnen und Schüler wiederholen diese mündlich. Anhand eines fragend-entwickelnden Lehrgesprächs bespricht die Klasse nun das Wurzelziehen, um die Seiten c, a, b zu erhalten. Dies macht die Klasse zuerst mit den Variablen, danach wird das Wurzelziehen konkret anhand des bekannten Zahlentrippels 3, 4, 5 behandelt. Danach leitet die Lehrperson die Schülerinnnen und Schüler an, einen Theoriehefteintrag zu machen. Die Schülerinnen und Schüler übernehmen Titel und Ausformulierung vom Hellraumprojektor in ihr Heft und konstuieren die Zeichnung zum Satz mit Hilfe des Thaleskreises, mit vorgegebenen Massen und schreiben die Formel und deren Ableitungen von der Wandtafel ab. Danach bespricht die Klasse die Hausaufgaben, bei denen es um die Bestätigung des Satzes von Pythagoras geht. Mit einem fragend- entwickelnden Lehr- und Lerngespräch leitet die Lehrperson zur Beweisführung des Satzes von Pythagoras über. Es handelt sich dabei um den Ergänzungsbeweis. Dieser kann nicht zu Ende entwickelt werden, da es in die Pause klingelt. Er wird in der dritten Stunde weiter bearbeitet. Zum Schluss der Stunde gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B13-P-2113-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn dieser Lektion wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs der Inhalt der letzten zwei Lektionen aufgefrischt. Danach werden die Hausaufgaben kontrollie...    mehr

    Zu Beginn dieser Lektion wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs der Inhalt der letzten zwei Lektionen aufgefrischt. Danach werden die Hausaufgaben kontrolliert. Dabei schreiben vier Schülerinnen und Schüler die Aufgaben 1a-1d (gegeben, gesucht, Formel, Ergebnisse) an die Wandtafel. In der Zwischenzeit kontrolliert die Lehrperson die Aufgabe zwei in den Heften der Schülerinnen und Schüler. Die Aufgabe eins wird von der ganzen Klasse gemeinsam angeschaut. Die Lehrperson macht mündliche und schriftliche Ergänzungen zu beiden Aufgaben. Bei den Hausaufgaben handelt es sich um Berechnungen von Seiten in rechtwinkligen Dreiecken. Darauf wird die Ausformulierung des Satzes von Pythagoras von einem Schüler wiederholt. Die Lehrperson leitet danach zum Ergänzungsbeweis über, dessen Erarbeitung die Klasse in der letzten Stunde bereits begonnen hatte. Anhand einer Darstellung des Ergänzungsbeweises am Hellraumprojektor zeigt die Lehrperson den bereits erarbeiteten Teil des Beweises noch einmal auf. Darauf wird mit einem fragend-entwickelnden Lehr- und Lerngespräch der Beweis in der Klasse weiter erarbeitet. Nach der Erarbeitung erhalten die Schülerinnen und Schüler ein Merkblatt des Beweises, das sie darauf in einer Stillarbeitsphase bemalen. Wer fertig ist, übernimmt eine Aufgabenstellung mit Zeichnung von der Wandtafel ins Theorieheft und versucht diese zu lösen. Es handelt sich dabei um die Berechnung der Basishöhe eines Dreiecks, das weder rechtwinklig, noch gleichschenklig ist. Indirekt handelt es sich dabei um den Höhensatz oder den Kathetensatz (= Satz des Euklid). Die Schülerinnen und Schüler werden von der Lehrperson aufgefordert, in Gruppen die Erkenntnisse an der Wandtafel zusammen zu tragen. Zwei Schüler lösen die Aufgabe schlussendlich vorne an der Wandtafel und schreiben dabei ihren Lösungsweg an. Sie werden von der Klasse unterstützt. Die Aufgabe wird nicht ganz zu Ende gelöst. Zum Schluss der Stunde gibt die Lehrperson die Hausaufgaben auf das nächste Mal auf und verteilt dazu ein Aufgabenblatt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B14-P-2114-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach der Pause arbeiten die Schülerinnen und Schüler an dem Hefteintrag weiter. Wie sie fertig sind, teilt die Lehrperson ein Blatt aus, auf dem der Beweis, der vorige Stunde gefüh...    mehr

    Nach der Pause arbeiten die Schülerinnen und Schüler an dem Hefteintrag weiter. Wie sie fertig sind, teilt die Lehrperson ein Blatt aus, auf dem der Beweis, der vorige Stunde geführt wurde, noch einmal dargestellt ist. Anhand dieses Blattes repetiert die Lehrperson den Beweis noch einmal kurz. Anschließend ruft sich die Klasse die Umkehrformeln des Satzes wieder ins Gedächtnis, um mit ihnen einige einschrittige und einfache mehrschrittige Übungsaufgaben aus dem Buch zu lösen. Die erste der Übungen löst die Klasse im Plenum, die weiteren lösen die Schülerinnen und Schüler selbständig. Dann werden die Aufgaben korrigiert. Die Lehrperson verweist auf die ganzzahligen Beispiele, die in der Tabelle der letzten Lektion entstanden sind. Mit einer Schnur, die in drei Abschnitte mit den Längen dreißig, vierzig und fünfzig Zentimeter unterteilt wurde, legt eine Schülerin an der Wandtafel ein Dreieck, das, wie erwartet, rechtwinklig ist. Kurz verweist die Lehrperson darauf, dass mit dieser Methode im Gelände ein rechter Winkel abgesteckt werden könnte. Dann rechnen die Schülerinnen und Schüler an den Aufgaben weiter. Während dieser Stillarbeitsphase veranlasst die Lehrperson die Schüler die Resultate einiger Aufgaben zum Vergleich bekannt zu geben. Die Lehrperson unterbricht die Schülerinnen und Schüler bei der Arbeit, um mit ihnen gemeinsam die Formel zur Berechnung der Quadratdiagonalen zu entwickeln. Die Entwicklung wird von einem konkreten Zahlenbeispiel begleitet. Die Lektion wird mit einigen organisatorischen Informationen abgeschlossen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B17-P-2202-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn dieser Stunde werden die Hausaufgaben korrigiert. Dazu werden sie in der Bank ausgetauscht und die Ergebnisse werden korrigiert, währendem die Lehrperson diese vorliest. Ei...    mehr

    Zu Beginn dieser Stunde werden die Hausaufgaben korrigiert. Dazu werden sie in der Bank ausgetauscht und die Ergebnisse werden korrigiert, währendem die Lehrperson diese vorliest. Eine Aufgabe der Hausaufgaben wird gemeinsam gelöst. Darauf nehmen die Schülerinnen und Schüler ihr Theorieheft hervor. Die Lehrperson schreibt die Formel des Pythagoras (a2 + b2 = c2) und deren Umformung (a2 = c2 - b2) an die Wandtafel und erklärt den Schülerinnen und Schülern das Wurzelziehen noch einmal. Am Hellraumprojektor steht der Titel "Satz des Pythagoras" und dazu ist die grafische Darstellung des Satzes von Pythagoras dargestellt. Zudem verteilt die Lehrperson ein Merkblatt, zu einem vorhergehenden Thema, das die Schülerinnen und Schüler zuerst in ihr Heft einkleben. Darauf machen die Schülerinnen und Schüler einen Theoriehefteintrag. Währendem erklärt die Lehrperson einer Schülerin die krank war, den behandelten Stoff. Während der Stillarbeit nennt die Lehrperson neun Aufgaben, die nach Beendigung des Eintrags gemacht werden können. Die Aufgaben sind mehrschrittig und anspruchsvoll. Es handelt sich dabei um die Berechnung von Diagonalen bei Rechtecken und Quadraten, um die Berechnung von Rechtecks- und Quadratseiten, um die Berechnung der Höhe von gleichseitigen Dreiecken und mehrschrittigen Aufgaben mit einem Bezug zur Praxis. Die Schülerinnen und Schüler bearbeiten diese Aufgaben in Einzelarbeit. Während der Stillarbeitsphase notiert die Lehrperson eine weitere Aufgabe an die Wandtafel. Der Auftrag dabei ist, pythagoräische Zahlentripel zu finden. Eine Hilfestellung wird mit vier Teilaufgaben geboten. Auch diese Aufgaben sind mehrschrittig und anspruchsvoll. Darauf unterbricht die Lehrperson die Stillarbeit und erklärt das Vorgehen bei einer Aufgabe, weil bei deren Bearbeitung Probleme auftraten. Danach gibt die Lehrperson die neue Aufgabe an der Wandtafel in Auftrag. Die Schülerinnen und Schüler arbeiten weiter in Einzelarbeit. Am Ende der Stunde wird über die Hausaufgaben gesprochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B19-P-2204-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran...    mehr

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran: Wie hoch und/ oder breit darf ein am Boden zusammengebauter IKEA-Schrank sein, damit er in einem 223 cm hohen Zimmer aufgestellt werden kann. In Zweiergruppen überlegen sich die Schülerinnen und Schüler mit welchen der vorgegebenen Schränke das möglich ist. Nach einigen Minuten sammelt die Lehrperson die Meinungen der Schülerinnen und Schüler und hält sie auf einer Planskizze fest. Die Meinungen gehen weit auseinander. Nun haben die Schülerinnen und Schüler zwei Möglichkeiten wie sie weiterarbeiten wollen: Die einen schneiden die Planteile der Schränke aus, die andern suchen nach einer allgemeingültigen Formel und versuchen so explorativ herauszufinden, welcher der verschiedenen Schränke denn nun aufgestellt werden kann und welcher nicht und woran es liegen könnte, dass ein Schrank aufgestellt werden kann oder nicht. Im Plenum äußern sich die Schüler über ihre Erkenntnisse: Entscheidend ist die Diagonale. Die Lehrperson abstrahiert das Problem auf ein rechtwinkliges Dreieck, von dem man die Hypotenuse nicht kennt. Ein Schüler kennt den Satz des Pythagoras und nennt ihn als Lösungsvorschlag. Die Lehrperson stellt den Satz an der Wandtafel geometrisch dar und der Schüler rechnet vor, wie die Diagonale eines Schrankes mit dem Satz zu bestimmen ist. Danach fordert die Lehrperson die Schülerinnen und Schüler auf, die Diagonalen der anderen Schränke zu berechnen und so endlich zu bestimmen, welcher nun aufgestellt werden könne. Da sich nun alle einig sind, welcher Schrank in das Zimmer passt, übernehmen die Schülerinnen und Schüler die geometrischen Ausführungen in ihr Theorieheft. Dazu soll jeder für sich den Satz des Pythagoras in eigenen Worten formulieren. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B19-P-2204-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach der Pause sammelt die Lehrperson die Formulierungen der Schülerinnen und Schüler. Schließlich diktiert er die Standartformulierung, welche die Schülerinnen und Schüler in ihr H...    mehr

    Nach der Pause sammelt die Lehrperson die Formulierungen der Schülerinnen und Schüler. Schließlich diktiert er die Standartformulierung, welche die Schülerinnen und Schüler in ihr Heft übernehmen. Im Plenum wird die Diagonale eines Rechtecks berechnet. Danach berechnen die Schülerinnen und Schüler selbständig die maximale Breite von zwei Schränken, die bei gegebener Höhe wie bei der Hinführungsaufgabe der letzten Lektion in demselben Zimmer aufgestellt werden sollen. Anschließend erklärt eine Schülerin ihren Lösungsweg zur ersten Aufgabe an der Wandtafel. Für die Berechnung des zweiten Schrankes bekommen die Schülerinnen und Schüler noch etwas Zeit, bevor dann ein Schüler den Lösungsweg zu dieser Aufgabe demonstriert. Schließlich gibt die Lehrperson als Hausaufgabe die Berechnung von einigen Dreiecksseiten und Dreiecksflächen, an diesen können die Schülerinnen und Schüler bis zum Ende der Lektion arbeiten. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B20-P-2205-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Ein Arbeitsplan, auf dem der ungefähre Inhalt der nächsten zwei Lektionen beschrieben ist, wird verteilt. Gemäß dieses Arbeitsp...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Ein Arbeitsplan, auf dem der ungefähre Inhalt der nächsten zwei Lektionen beschrieben ist, wird verteilt. Gemäß dieses Arbeitsplans repetieren die Schülerinnen und Schüler die Aussage des Satzes von Pythagoras. Dazu skizziert die Lehrperson die Pythagorasfigur an die Wandtafel. Zusammen mit dem Satz übernehmen sie die Schülerinnen und Schüler auf ein Theorieblatt. An Hand der skizzierten Pythagorasfigur kommt die Lehrperson auf das pythagoräische Zahlentripel zu sprechen. Wie auf dem Arbeitsplan vorgegeben beginnt die Klasse nun mit Übungsaufgaben. Zuerst werden zwei einschrittige Aufgaben im Plenum gelöst, weitere zwei Aufgaben lösen die Schülerinnen und Schüler selbständig. Einzelne Schüler lösen die Aufgaben an der Wandtafel. An Hand dieser Ausführungen werden die selbständig gelösten Aufgaben besprochen. Danach führt die Lehrperson mit einer weiteren Übungsaufgabe die Umkehrungen des Satzes von Pythagoras ein, anschließend werden bis zum Ende der Lektion weitere einschrittige Übungsaufgaben gelöst. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation