DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: "QUADRATISCHE FUNKTION" (Filter: Schlagwörter)
ANWENDUNGSAUFGABE (Filter: Schlagwörter)

Anzahl der Treffer: 3
     1     
  • Unterrichtsaufzeichnung (S352_obs086)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Im Fokus des Mathematikunterrichts stehen Anwendungsaufgaben zu quadratischen Gleichungen und Funktionen. Nach einer gemeinsamen Begrüßung führt die Lehrkraft den neuen Themenabschn...    mehr

    Im Fokus des Mathematikunterrichts stehen Anwendungsaufgaben zu quadratischen Gleichungen und Funktionen. Nach einer gemeinsamen Begrüßung führt die Lehrkraft den neuen Themenabschnitt ein. Aufbauend auf den bekannten Techniken zum Umgang mit quadratischen Funktionen und Gleichungen wird deren praktische Anwendung auf reale Probleme behandelt. Hierzu hält die Lehrkraft zunächst die einzelnen Schritte zur Arbeit mit Anwendungen fest. Zur Verdeutlichung der einzelnen Schritte projiziert die Lehrkraft eine Beispielaufgabe an die Wand. Die Klasse bearbeitet dieses Beispiel im Plenum. Anhand der realen Situation von Reparaturarbeiten in einem Tunnel leiten sie ein mathematisches Modell zur Lösung der Problemstellung ab. Anhand des Modells wandeln sie die gesuchten Größen in mathematische Fragestellungen um. Sie halten fest, dass sie Scheitelpunkte, Nullstellen und Schnittpunkte berechnen müssen. Danach teilt die Lehrkraft diese Beispielaufgabe auf einem Arbeitsblatt aus und fasst die Erkenntnisse zusammen. Im zweiten Drittel der Stunde lösen die Schülerinnen und Schüler die restliche Aufgabe in Einzelarbeit mit Hilfe des Arbeitsblatts. Die Lehrkraft geht währenddessen herum und gibt Hilfestellungen. Die Lehrkraft unterbricht die Einzelarbeitsphase kurz, damit die Klasse gemeinsam definiert, wie sie bei der Lösung des dritten Teils der Aufgabe vorgehen. Im letzten Drittel der Stunde schreiben drei Schülerinnen und Schüler ihre Ergebnisse an der Tafel an. Im Plenum bespricht die Klasse die Lösungen und formuliert Antwortsätze. Zum Stundenabschluss erteilt die Lehrkraft die Hausaufgaben. (DIPF/kw)    weniger

  • Unterrichtsaufzeichnung (S352_obs122)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Thema des Unterrichts sind quadratische Gleichungen. Nach der gemeinsamen Begrüßung bespricht die Klasse die Hausaufgaben zu quadratischen Gleichungen. Jeweils eine Schülerin oder e...    mehr

    Thema des Unterrichts sind quadratische Gleichungen. Nach der gemeinsamen Begrüßung bespricht die Klasse die Hausaufgaben zu quadratischen Gleichungen. Jeweils eine Schülerin oder ein Schüler trägt das Ergebnis einer Aufgabe vor. Die Lehrkraft schreibt die Lösungen an die Tafel. Es entstehen Gespräche zu einzelnen Lösungsschritten. Im zweiten Stundendrittel bearbeitet die Klasse eine Anwendungsaufgabe zu einem Zaun für ein Kaninchengehege. Die Lehrkraft fertigt hierzu eine Skizze an der Tafel an. In Partnerarbeit erörtern die Schülerinnen und Schüler mögliche Rechenwege zur Ermittlung des maximalen Flächeninhalts eines rechteckigen Geheges. Die Lehrkraft geht währenddessen herum und gibt Hilfestellungen. Sie unterbricht die Arbeitsphase, um die Fragestellung genauer zu erläutern. Hierzu ergänzt sie die Skizze an der Tafel. Im Plenum fertigt die Klasse eine Tabelle an, in der sie die möglichen Werte für Länge, Breite und Flächeninhalt des Rechtecks sammeln. Die Lehrkraft hält diese Wertetabelle an der Tafel fest. Im Anschluss erörtert die Klasse, wie sie von diesen Ergebnissen eine quadratische Funktion zur Berechnung des maximalen Flächeninhalts ableiten können. Im letzten Stundendrittel teilt die Lehrkraft die Klasse in drei Gruppen auf. Die einzelnen Gruppen nutzen unterschiedliche Verfahren zur Ermittlung des maximalen Flächeninhalts. Die erste Gruppe vervollständigt die Wertetabelle. Die zweite Gruppe skizziert hierzu einen Graph. Die Dritte ermittelt das Maximum mittels der aufgestellten Funktion. Hierzu berechnen sie den Scheitelpunkt der Funktion. Die Lehrkraft geht während dieser Arbeitsphase herum und gibt Hilfestellungen. In den letzten Minuten des Unterrichts sammelt die Klasse im Plenum die Ergebnisse zu der Wertetabelle. Die Lehrkraft hält die Werte für den Flächeninhalt an der Tafel fest. Zum Abschluss erteilt sie die Hausaufgaben. (DIPF/kw)    weniger

  • Unterrichtsaufzeichnung (S352_obs125)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Im Fokus des Unterrichts steht die Berechnung des Flächeninhalts. Nach der gemeinsamen Begrüßung wiederholt die Klasse die Inhalte der letzten Stunde, in der sie eine Anwendungsaufgab...    mehr

    Im Fokus des Unterrichts steht die Berechnung des Flächeninhalts. Nach der gemeinsamen Begrüßung wiederholt die Klasse die Inhalte der letzten Stunde, in der sie eine Anwendungsaufgabe zum Zaun eines Geheges betrachteten. Hierzu zeichnet die Lehrkraft drei Skizzen an die Tafel, die mögliche Formen des Zauns darstellen. Sie halten fest, dass ein rechteckiger Zaun den größten Flächeninhalt ermöglicht. Anschließend ermitteln die Schülerinnen und Schüler, welche Art von Rechteck den größten Flächeninhalt aufweist. Hierzu berechnen sie in Einzelarbeit den Flächeninhalt verschiedener Rechtecke. Im Plenum sammelt die Klasse mögliche Maße für das Rechteck und hält den Flächeninhalt fest. Zu Beginn des zweiten Stundendrittels berechnet die Klasse die Breite eines Zaunes, dessen Länge 7m beträgt. Ausgehend von dieser Rechnung leiten sie eine allgemeine Formel zur Berechnung der Breite ab. Anschließend diskutieren sie im Plenum, wie sie von dieser Formel eine Formel zur Berechnung des Flächeninhalts herleiten können. Die Lehrkraft notiert die Erkenntnisse an der Tafel. Dann überträgt sie die Formel für den Flächeninhalt in eine quadratische Funktion. Es entstehen Gespräche zum Umformen einer Funktion in eine Gleichung und zur Berechnung der Nullstellen. Im letzten Stundendrittel erörtert die Klasse gemeinsam, wie sie diese Funktion in einem Koordinatensystem darstellen können. Hierzu sammeln die Schülerinnen und Schüler bekannte Werte des Flächeninhalts. Sie berechnen weitere Werte durch Einsetzen in die Funktion. Die Lehrkraft trägt diese in ein Koordinatensystem an der Tafel ein. Anhand der entstandenen Parabel bespricht die Klasse, wie sie den Scheitelpunkt rechnerisch ermitteln können. Hierzu berechnet ein Schüler zunächst die Nullstellen. Die Klasse hält fest, dass der Scheitelpunkt den größten Wert für den Flächeninhalt darstellt. In den letzten Minuten des Unterrichts bearbeiten die Schülerinnen und Schüler eine Aufgabe zu einer unbekannten Zahl im Lehrbuch. Zunächst bespricht die Klasse die Aufgabenstellung im Plenum. Dann lösen die Schülerinnen und Schüler die Aufgabe in Einzelarbeit. Eine Schülerin nennt die Gleichung, die sie zur Ermittlung der Zahl aufgestellt hat. Gemeinsam diskutiert die Klasse das Ergebnis. Die Lehrkraft löst die Gleichung an der Tafel. Zum Abschluss erteilt sie die Hausaufgaben. (DIPF/kw)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation