DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: "QUADRATISCHE FUNKTION" (Filter: Schlagwörter)
NULLSTELLE (Filter: Schlagwörter)

Anzahl der Treffer: 9
     1     
  • Unterrichtsaufzeichnung (S352_obs005)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Thema dieser Mathematikdoppelstunde sind quadratische Funktionen. Nach der Begrüßung präsentieren zu Beginn der Stunde zwei Gruppen ihre Ergebnisse aus einer vorausgehenden Gruppenarb...    mehr

    Thema dieser Mathematikdoppelstunde sind quadratische Funktionen. Nach der Begrüßung präsentieren zu Beginn der Stunde zwei Gruppen ihre Ergebnisse aus einer vorausgehenden Gruppenarbeit. In der ersten Gruppenpräsentation ordnen die Schülerinnen und Schüler mehrere Graphen jeweils einer Funktion zu. Ein Schüler aus Gruppe 2 ergänzt Lösungswege. Die Lehrkraft stellt zudem die Frage, wie die Schnittpunkte rechnerisch zu ermitteln seien. Zum Schluss der thematischen Einheit bezieht die Klasse die rechnerische Bearbeitungsform zu quadratischen Gleichungen auf den Anwendungsbereich. Die Lehrkraft stellt in diesem Zusammenhang die Frage, wo Parabeln im Alltag vorkommen. Hierfür finden die Schülerinnen und Schüler im Unterrichtsgespräch Beispiele. Die Lehrkraft teilt im Anschluss daran ein Arbeitsblatt aus, dessen Aufgaben mit zeitlichen Aufwands- und Schwierigkeitsgraden versehen sind. Während die Schülerinnen und Schüler in Partnerarbeit die Aufgaben bearbeiten, geht die Lehrkraft durch die Klasse und gibt Hilfestellung. Zu Beginn des letzten Stundendrittels erkundigt sich die Lehrkraft zunächst, wer welche Aufgabe bearbeitet hat. Mehrere Schülerinnen und Schüler gehen nacheinander nach vorne und stellen ihre Ergebnisse vor. Dabei entstehen Unterrichtsgespräche. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs007)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Thema dieser Unterrichtsstunde ist das Ermitteln von Nullstellen. Nach der Begrüßung wiederholt die Klasse, wie man die Nullstellen für eine Parabel berechnet. In Partnerarbeit über...    mehr

    Thema dieser Unterrichtsstunde ist das Ermitteln von Nullstellen. Nach der Begrüßung wiederholt die Klasse, wie man die Nullstellen für eine Parabel berechnet. In Partnerarbeit überlegen sich die Schülerinnen und Schüler anhand von drei Beispielen, inwieweit Nullstellen zu ermitteln sind. Der Lehrer schreibt hierfür drei Parabeln an die Tafel an. Hierbei besprechen die Schülerinnen und Schüler Varianten der Nullstellen. Während der Partnerarbeitsphase geht der Lehrer durch die Klasse und gibt Hilfestellung. Nach der Partnerarbeit tragen die Schüler mit dem Lehrer im Klassengespräch die Ergebnisse an der Tafel zusammen. Der Lehrer visualisiert die Nullstellen mittels eines Koordinatensystems. Im Anschluss daran schreibt der Lehrer die Normalform einer quadratischen Gleichung an die Tafel an. Die Klasse erörtert in einer längeren Unterrichtsphase die Bearbeitungsschritte zur Berechnung der Nullstellen. Die Schülerinnen und Schüler schreiben sich zunächst eine Formel und dann das Tafelbild in ihr Heft auf. Dann bearbeiten sie zwei Aufgaben aus dem Lehrbuch. Die Schülerinnen und Schüler suchen sich aus, ob sie in Einzel- oder in Partnerarbeit die Aufgaben lösen. Sie stoßen im Verlauf der Berechnung auf Probleme. Dabei entstehen Gespräche zur Wurzelberechnung. Im letzten Stundendrittel werden die Ergebnisse der Aufgaben an der Tafel besprochen. Anschließend bearbeiten die Schülerinnen und Schüler in Einzel- oder in Partnerarbeiten mehrere Aufgaben aus dem Lehrbuch zu dem gleichen Thema. Der Lehrer geht durch die Klasse und erkundigt sich bei den Schülern nach dem Kenntnisstand. Zum Schluss der Unterrichtsstunde schreibt eine Schülerin ihre Lösung an der Tafel an und erklärt dabei ihr Vorgehen. Abschließend erteilt der Lehrer die Hausaufgaben. (DIPF/gf/nj)    weniger

  • Unterrichtsaufzeichnung (S352_obs011)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Thema dieser Unterrichtsstunde ist der Schnittpunkt eines Graphen mit der x-Achse. Zu Beginn der Stunde verweist die Lehrerin auf die letzte Unterrichtsstunde, in der die Klasse di...    mehr

    Thema dieser Unterrichtsstunde ist der Schnittpunkt eines Graphen mit der x-Achse. Zu Beginn der Stunde verweist die Lehrerin auf die letzte Unterrichtsstunde, in der die Klasse die quadratische Ergänzung bearbeitet hat. Die Lehrerin teilt in diesem Zusammenhang für diejenigen Schülerinnen und Schüler, die in der letzten Stunde nicht anwesend waren, ein Lösungsblatt aus. Mittels eines Overheadprojektors visualisiert die Lehrerin den Graphen einer quadratischen Funktion an der Wand. Die Klasse stellt einen Bezug zur linearen Funktion her. In diesem Zusammenhang leitet die Lehrerin das Thema der aktuellen Unterrichtsstunde ein: Die Berechnung der Nullstellen. Dabei bearbeitet die Klasse die Frage, was für die Nullstellen einer linearen Funktion auf der x-Achse charakteristisch sei. Es entsteht ein Tafelbild. Im Anschluss daran teilt die Lehrerin ein Arbeitsblatt aus, das die Schülerinnen und Schüler einzeln oder zu zweit bearbeiten. In dem Arbeitsblatt sind mehrere aufeinander bezogene Aufgaben zu sehen. Die Schülerinnen und Schüler rekonstruieren, wie die Gleichungen gelöst wurden und stellen dar, welche Äquivalenzformung vorgenommen wurde. Die Lehrerin visualisiert das Arbeitsblatt mittels des Overheadprojektors. Im Klassengespräch erarbeiten die Schülerinnen und Schüler die Umformung der einzelnen Aufgaben. Die Klasse leitet sich zudem eine allgemeine Formel her, wie die Nullstellen zu ermitteln sind und wendet diese an einem Beispiel an. Hierzu entsteht zudem ein Tafelbild. Im letzten Stundendrittel bearbeiten die Schülerinnen und Schüler ein weiteres Beispiel. Das letzte Beispiel schreiben die Schülerinnen und Schüler sich in ihr Heft auf. Zum Schluss der Unterrichtsstunde nennt die Lehrerin die Hausaufgaben. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs112)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Im Zentrum dieser Unterrichtsstunde steht das Berechnen der Nullstellen quadratischer Gleichungen. Zu Beginn der Stunde wiederholt die Klasse die Inhalte der letzten Unterrichtsstu...    mehr

    Im Zentrum dieser Unterrichtsstunde steht das Berechnen der Nullstellen quadratischer Gleichungen. Zu Beginn der Stunde wiederholt die Klasse die Inhalte der letzten Unterrichtsstunde. Hierzu projiziert die Lehrkraft drei quadratische Funktionen und die p/q Formel an die Wand. Die Klasse bestimmt dabei die Werte für p und q. Anschließend löst die Klasse in Einzel- oder in Partnerarbeit quadratische Gleichung mit Hilfe der p/q Formel. Die Schülerinnen und Schüler nutzen hierzu den Taschenrechner, Laptops und eine Mathematik-App. Zudem prüfen sie, inwiefern die Diskriminanten mit der Anzahl der Nullstellen zusammenhängen. Die Klasse hält die Ergebnisse auf Metaplankarten fest. Die Lehrkraft geht währenddessen herum und gibt Hilfestellungen. Im Anschluss daran stellen ein Schüler und eine Schülerin vor der Klasse ihre Lösungen vor. Es entstehen Gespräche zum Lösungsvorgehen. Danach bespricht die Klasse die Voraussetzungen für die Anwendung der p/q Formel. Es entsteht durch die Lehrkraft ein Tafelbild. Die Klasse bespricht im Plenum ein weiteres Beispiel und bestimmt hierzu p und q. Die Lehrkraft und die Klasse fassen schließlich die Regeln zur Anwendung der p/q Formel zusammen. Zum Ende der Stunde erteilt die Lehrkraft die Hausaufgaben. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs125)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Im Fokus des Unterrichts steht die Berechnung des Flächeninhalts. Nach der gemeinsamen Begrüßung wiederholt die Klasse die Inhalte der letzten Stunde, in der sie eine Anwendungsaufgab...    mehr

    Im Fokus des Unterrichts steht die Berechnung des Flächeninhalts. Nach der gemeinsamen Begrüßung wiederholt die Klasse die Inhalte der letzten Stunde, in der sie eine Anwendungsaufgabe zum Zaun eines Geheges betrachteten. Hierzu zeichnet die Lehrkraft drei Skizzen an die Tafel, die mögliche Formen des Zauns darstellen. Sie halten fest, dass ein rechteckiger Zaun den größten Flächeninhalt ermöglicht. Anschließend ermitteln die Schülerinnen und Schüler, welche Art von Rechteck den größten Flächeninhalt aufweist. Hierzu berechnen sie in Einzelarbeit den Flächeninhalt verschiedener Rechtecke. Im Plenum sammelt die Klasse mögliche Maße für das Rechteck und hält den Flächeninhalt fest. Zu Beginn des zweiten Stundendrittels berechnet die Klasse die Breite eines Zaunes, dessen Länge 7m beträgt. Ausgehend von dieser Rechnung leiten sie eine allgemeine Formel zur Berechnung der Breite ab. Anschließend diskutieren sie im Plenum, wie sie von dieser Formel eine Formel zur Berechnung des Flächeninhalts herleiten können. Die Lehrkraft notiert die Erkenntnisse an der Tafel. Dann überträgt sie die Formel für den Flächeninhalt in eine quadratische Funktion. Es entstehen Gespräche zum Umformen einer Funktion in eine Gleichung und zur Berechnung der Nullstellen. Im letzten Stundendrittel erörtert die Klasse gemeinsam, wie sie diese Funktion in einem Koordinatensystem darstellen können. Hierzu sammeln die Schülerinnen und Schüler bekannte Werte des Flächeninhalts. Sie berechnen weitere Werte durch Einsetzen in die Funktion. Die Lehrkraft trägt diese in ein Koordinatensystem an der Tafel ein. Anhand der entstandenen Parabel bespricht die Klasse, wie sie den Scheitelpunkt rechnerisch ermitteln können. Hierzu berechnet ein Schüler zunächst die Nullstellen. Die Klasse hält fest, dass der Scheitelpunkt den größten Wert für den Flächeninhalt darstellt. In den letzten Minuten des Unterrichts bearbeiten die Schülerinnen und Schüler eine Aufgabe zu einer unbekannten Zahl im Lehrbuch. Zunächst bespricht die Klasse die Aufgabenstellung im Plenum. Dann lösen die Schülerinnen und Schüler die Aufgabe in Einzelarbeit. Eine Schülerin nennt die Gleichung, die sie zur Ermittlung der Zahl aufgestellt hat. Gemeinsam diskutiert die Klasse das Ergebnis. Die Lehrkraft löst die Gleichung an der Tafel. Zum Abschluss erteilt sie die Hausaufgaben. (DIPF/kw)    weniger

  • Unterrichtsaufzeichnung (S352_obs130)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Im Fokus des Unterrichts steht das Ermitteln der Nullstellen quadratischer Funktionen. Nach der Begrüßung wiederholt die Klasse die Erkenntnisse der letzten Stunde zum Thema quadrat...    mehr

    Im Fokus des Unterrichts steht das Ermitteln der Nullstellen quadratischer Funktionen. Nach der Begrüßung wiederholt die Klasse die Erkenntnisse der letzten Stunde zum Thema quadratische Funktionen. Hierzu visualisiert die Lehrkraft eine Parabel an der Tafel. Anhand der Parabel bespricht die Klasse, wie an der Funktion die Verschiebung der Parabel zu erkennen ist. Dann bespricht die Klasse die Hausaufgaben. Hierzu schreibt die Lehrkraft die quadratischen Funktionen der Aufgaben an die Tafel. Einzelne Schülerinnen und Schüler beschreiben die Parabeln, die sie zu diesen Funktionen gezeichnet haben. Im Anschluss daran führt die Lehrkraft die Nullstellen quadratischer Funktionen als neues Thema ein. Anhand einer der Funktionen an der Tafel bespricht die Klasse im Plenum, wie sie die Nullstellen ermitteln können. Sie erörtern zunächst das zeichnerische und dann das rechnerische Verfahren. Zum rechnerischen Verfahren stellen sie eine quadratische Gleichung zu der Funktion auf. Um eine Lösungsstrategie für die Gleichung zu erarbeiten, wiederholt die Klasse zunächst ihre Kenntnisse zum Lösen linearer Gleichungen. Diese Kenntnisse wenden sie dann zur Lösung der quadratischen Gleichung an. Danach betrachtet die Klasse die zweite quadratische Funktion an der Tafel. Sie versuchen das rechnerische Verfahren auf diese Aufgabe anzuwenden. Es entstehen Gespräche zu möglichen Lösungsstrategien. Im Plenum formen sie gemeinsam die Gleichung um und lösen sie durch Einsetzen. Im letzten Stundendrittel teilt die Lehrkraft ein Arbeitsblatt aus. In Einzelarbeit ermitteln die Schülerinnen und Schüler die Nullstellen einiger Funktionen anhand des rechnerischen Lösungsverfahrens. Die Lehrkraft geht herum und gibt Hilfestellungen. Zum Ende des Unterrichts kündigt die Lehrkraft die Inhalte der nächsten Unterrichtsstunde an. (DIPF/kw)    weniger

  • Unterrichtsaufzeichnung (S352_obs135)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Im Fokus der Unterrichtsstunde steht das Lösen quadratischer Gleichungen. Nach der Begrüßung wiederholt die Klasse die Möglichkeiten zum Lösen quadratischer Gleichungen. Hierbei nen...    mehr

    Im Fokus der Unterrichtsstunde steht das Lösen quadratischer Gleichungen. Nach der Begrüßung wiederholt die Klasse die Möglichkeiten zum Lösen quadratischer Gleichungen. Hierbei nennen sie die p/q Formel und die quadratische Ergänzung. Die Lehrkraft projiziert danach drei quadratische Funktionen über den Overhead-Projektor. Die Schülerinnen und Schüler ermitteln die Nullstellen alleine oder in Partnerarbeit. Die Lehrkraft geht herum und gibt Hilfestellungen. Die Lehrkraft unterbricht die Arbeitsphase mehrmals, um die Lösungen der einzelnen Aufgaben zu besprechen. Hierzu stellt jeweils ein Schüler oder eine Schülerin ihren Lösungsansatz über die Dokumentenkamera vor. Zur zweiten und dritten Aufgabe visualisiert die Lehrkraft die Graphikanzeige des Taschenrechners, um die dazugehörigen Parabeln zu zeigen. Im letzten Stundendrittel bespricht die Klasse im Plenum drei Fälle beim Lösen quadratischer Gleichungen. Die Lehrkraft notiert zwei Fälle an der Tafel und die Schüler übertragen den Tafelanschrieb in ihre Hefte. Den dritten Fall schreibt eine Schülerin an die Tafel. Anschließend projiziert die Lehrkraft drei Übungsaufgaben zu den drei Fällen über die Dokumentenkamera. In den letzten Minuten der Unterrichtsstunde bespricht die Klasse die erste Aufgabe gemeinsam. Die Lehrkraft visualisiert die dazugehörige Parabel mit dem Programm Geogebra über das interaktive Whiteboard. Die restlichen Aufgaben bearbeiten die Schülerinnen und Schüler als Hausaufgabe. (DIPF/kw)    weniger

  • Unterrichtsaufzeichnung (S352_obs136)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Thema der Unterrichtsdoppelstunde sind quadratische Gleichungen. Zu Beginn der Stunde bearbeiten die Schülerinnen und Schüler eine Startaufgabe. Sie bestimmen die Lösungsmenge von ...    mehr

    Thema der Unterrichtsdoppelstunde sind quadratische Gleichungen. Zu Beginn der Stunde bearbeiten die Schülerinnen und Schüler eine Startaufgabe. Sie bestimmen die Lösungsmenge von vier Gleichungen. Die Lehrkraft sammelt währenddessen die unterschriebenen Klausuren und Berichtigungen ein. Durch Würfeln bestimmt die Lehrkraft Schülerinnen und Schüler, die ihr Ergebnis und ihre Lösungswege vortragen müssen. Die Lösungswege zu zwei Aufgaben betrachtet die Klasse über die Dokumentenkamera. Die vierte Aufgabe können sie mit den bisherigen Kenntnissen nicht lösen. Es entstehen Gespräche zu möglichen Lösungsstrategien. Die Lehrkraft visualisiert die dazugehörige Parabel über das Programm Geogebra am interaktiven Whiteboard. Anhand der graphischen Darstellung erläutert die Lehrkraft, dass es sich bei der Lösungsmenge quadratischer Gleichungen um die Nullstellen der Funktion handelt. Im zweiten Stundendrittel diskutiert die Klasse im Plenum mögliche Anzahl der Nullstellen und den Zusammenhang zwischen der Anzahl und der Position des Graphen. Die Lehrkraft notiert einen Merksatz zu quadratischen Gleichungen und ihrer graphischen Bedeutung sowie zur Normalform der Gleichung am interaktiven Whiteboard. Die Schülerinnen und Schüler übertragen den Satz in ihre Hefte und besprechen einzelne Aspekte des Merksatzes. Dann übt die Klasse die Umformung einer Gleichung in die Normalform anhand einer Beispielaufgabe. Nach einer kurzen Pause üben die Schülerinnen und Schüler in der zweiten Unterrichtsstunde den Umgang mit quadratischen Gleichungen und das Umformen in die Normalform in Einzelarbeit. Hierzu hat die Lehrkraft einige Gleichungen am interaktiven Whiteboard visualisiert. Im letzten Viertel der Stunde bespricht die Klasse die Aufgaben. Hierauf aufbauend führt die Lehrkraft das Thema „Lösen quadratischer Gleichungen“ mit einem sogenannten Gruppenpuzzle ein. Zunächst teilt die Lehrkraft die Klasse in sogenannte Stammgruppen ein. Die Gruppen bestehen jeweils aus drei oder vier Schülern. Die Schülerinnen und Schüler der einzelnen Stammgruppen werden dann in sogenannte Expertengruppen aufgeteilt, in denen sie anhand von Arbeitsblättern neue Themen erarbeiten, die sie in einem späteren Schritt an ihre Stammgruppen vermitteln. Mit der Arbeit in den Expertengruppen sind sie bis zum Stundenende beschäftigt. (DIPF/kw)    weniger

  • Unterrichtsaufzeichnung (S352_obs137)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TVD

    Thema des Unterrichts sind quadratische Funktionen und quadratische Gleichungen. Nach der Begrüßung schreibt die Lehrkraft als Startaufgabe drei quadratische Gleichungen an das Whit...    mehr

    Thema des Unterrichts sind quadratische Funktionen und quadratische Gleichungen. Nach der Begrüßung schreibt die Lehrkraft als Startaufgabe drei quadratische Gleichungen an das Whiteboard. In Einzelarbeit bestimmen die Schülerinnen und Schüler die Lösungsmenge der Gleichungen. Die Lehrkraft geht herum und gibt Hilfestellungen. Danach stellen einzelne Schülerinnen und Schüler ihre Lösungswege am interaktiven Whiteboard vor. Im Plenum entstehen Gespräche zu den Lösungsschritten und Ergebnissen. Im Anschluss daran bespricht die Klasse die Hausaufgaben. Mittels auswürfeln bestimmt die Lehrkraft pro Aufgabe eine Person, die ihr Ergebnis vorstellen muss. Zum Ende des ersten Stundendrittels liest die Lehrkraft eine Textaufgabe zu einem Turmspringer vor und fertig eine Skizze hierzu am interaktiven Whiteboard an. In der Aufgabe ist eine quadratische Funktion gegeben. Mit dieser Textaufgabe befasst sich die Klasse für den Rest der Stunde. Zunächst berechnen die Schüler und Schülerinnen in Einzelarbeit den höchsten Punkt der Flugbahn des Turmspringers durch Ermittlung des Scheitelpunkts. Im Plenum bespricht die Klasse das Ergebnis. Anschließend liest die Lehrkraft einen weiteren Teil der Textaufgabe vor. Die Schülerinnen und Schüler berechnen nun den Landepunkt durch Ermittlung der Nullstelle. Die Lehrkraft geht währenddessen herum und gibt Hilfestellungen. Sie unterbricht diese Einzelarbeitsphase, um einen weiteren Teil der Aufgabe vorzulesen. Die Klasse berechnet dann die Höhe eines zweiten Sprungturms sowie den Schnittpunkt zweier Parabeln. Zum Abschluss visualisiert die Lehrkraft die beiden Parabeln und ihren Schnittpunkt mit dem Programm Geogebra am interaktiven Whiteboard. Als Hausaufgabe beenden die Schülerinnen und Schüler die Aufgaben. (DIPF/kw)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation