DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: ERGEBNISSICHERUNG (Filter: Schlagwörter)
Pythagoras - Videogestützte Unterrichtsstudie (Filter: Studie)

Anzahl der Treffer: 36
  • Satzgruppe des Pythagoras (A01-P-1101-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Leh...    mehr

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Lehrperson einen Plan der Schwimmstrecke an die Wandtafel. In einer Meeresbucht muss vom Strand zu einer Boje, dann parallel zum Stand zu einer anderen Boje und wieder zurück zum Strand geschwommen werden. Ein Schüler zeichnet an der Wandtafel die zu schwimmen ideale Strecke ein. Da alle 1400 Schwimmer gleichzeitig starten, ist die Schwimmstrecke vom Strand zur ersten Boje für den zu äußerst startenden Schwimmer bedeutend weiter, als die ideale Strecke. Ein anderer Schüler zeichnet an der Wandtafel den Weg dieses Schwimmers ein. Dabei wird festgestellt, dass die erste, ideale Strecke rechtwinklig zum Strand steht. Nach einer ersten Schätzung fragt die Lehrperson die Schülerinnen und Schüler, ob sie einen Lösungsvorschlag hätten, die genaue Differenz der idealen und der äußersten Schwimmstrecke zu berechnen. Aus den Schüleraussagen kann sie dann entnehmen, dass irgendwo im Schulhaus der Satz des Pythagoras dargestellt wird, und dass die Schülerinnen und Schüler sich diese Darstellungen schon angesehen, wenn auch nicht vollständig verstanden haben. Die Lehrperson lässt die noch etwas unklaren Äusserungen der Schülerinnen und Schüler stehen und benennt zuerst mit Hilfe der Klasse Katheten und Hypotenuse im rechtwinkligen Dreieck an der Wandtafel. An Hand dieser Bezeichnungen und Beschriftung gelingt es nun einem Schüler für das Dreieck an der Wandtafel den Satz des Pythagoras richtig zu formulieren. Am Hellraumprojektor ist der Satz und eine ausgedeutschte Fassung davon zu sehen. Die Schülerinnen und Schüler lesen die beiden Varianten und erklären kurz in eigenen Worten, wie sie das verstehen. Auf die Frage, was der Satz denn nun bringt, fallen die Antworten „Hausbau“ und „Berechnung einer Entfernung“. Mündlich wird besprochen, wie bei einer solchen Berechnung vorgegangen werden müsste und wie die Umformungen des Satzes funktionieren. Während der Einkreisung des Satzes von Pythagoras, die Beschriftung und Bezeichnungen im rechtwinkligen Dreieck und schliesslich der Satz selber, wurden an der Wandtafel immer wieder Notizen zur Veranschaulichung des Gesagten gemacht. Diese Darstellungen übernehmen die Schülerinnen und Schüler nun in ihr Heft. Anschliessend berechnen die Schülerinnen und Schüler mit Hilfe der Lehrperson gemeinsam die Differenz zwischen der idealen und der äußersten Schwimmstrecke der Triathlonaufstellung und übernehmen dann Skizze und Berechnungen von der Wandtafel in ihr Heft. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A01-P-1101-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion werden zuerst die Hausaufgaben kontrolliert, dabei erklären die Schülerinnen und Schüler, wie sie dabei vorgegangen sind. Es handelt sich dabei um einfache Seit...    mehr

    Zu Beginn der Lektion werden zuerst die Hausaufgaben kontrolliert, dabei erklären die Schülerinnen und Schüler, wie sie dabei vorgegangen sind. Es handelt sich dabei um einfache Seitenberechnungen im rechtwinkligen Dreieck. Im Plenum führen die Schülerinnen und Schüler, angeführt von der Lehrperson den Ergänzungsbeweis und übernehmen die dazugehörenden Ausführungen in ihr Heft. Anschliessend teilt die Lehrperson aus 80 Karten an Zweierschülergruppen je eine Karte aus, auf der mehrschrittige Pythagorasaufgaben von verschiedenem Schwierigkeitsgrad zu finden sind. Die Schülerinnen und Schüler beginnen mit den einfachsten Aufgaben. Ist eine Aufgabe fertig berechnet, kann die Karte gegen eine andere ausgetauscht werden. Da sich die Lösung der Aufgabe immer hinten auf der Karte befindet, lösen und kontrollieren die Schülerinnen und Schüler von diesen Aufgaben selbständig bis zum Lektionsende. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A02-P-1103-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben, dabei gibt die Lehrperson auch bekannt, dass in dieser und den folgenden Lektionen ein wichtiger Satz der Geometrie geler...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben, dabei gibt die Lehrperson auch bekannt, dass in dieser und den folgenden Lektionen ein wichtiger Satz der Geometrie gelernt werden soll. Dann repetiert die Klasse als erstes, wie ein - in diesem Fall rechtwinkliges - Dreieck beschriftet wird. Die entsprechenden Ausführungen hält die Lehrperson an der Wandtafel fest. An Hand dieses rechtwinkligen Dreiecks werden dann die Begriffe Kathete und Hypotenuse eingeführt. Danach lässt die Lehrperson zwei Schüler ein Werbeplakat aufhängen, auf dem über den Seiten eines rechtwinkligen Dreiecks mit den Seitenverhältnissen drei, vier und fünf Quadrate aus Rittersportschokolade geklebt wurden. Daran dass die Schülerinnen und Schüler sehen, dass neun plus sechzehn gleich fünfundzwanzig ist, stellt die Lehrperson die Behauptung auf, dass im rechtwinkligen Dreieck immer die Summe der Flächen der Kathetequadrate der Fläche des Hypotenusenquadrates entspricht. Dazu zeichnet die Lehrperson die Pythagorasfigur an die Wandtafel. Anschließend haben die Schülerinnen und Schüler Zeit, das rechtwinklige Dreieck mit den korrekten Beschriftungen, die Pythagorasfigur und den Satz des Pythagoras von der Wandtafel in ihr Theorieheft zu übernehmen. Als einige der Schülerinnen und Schüler mit dem Abschreiben fertig sind, fordert sie die Lehrperson auf, eine sprachliche Formulierung für den ins Heft geschriebenen Satz "a2+b2=c2" zu finden. Aus den Beiträgen der Schülerinnen und Schüler formuliert die Lehrperson einen vollständigen Merksatz und schreibt diesen an die Wandtafel. Die Schülerinnen und Schüler schreiben ihn ab. Abschliessend erklärt die Lehrperson, dass aber - in einer weiteren Stunde - noch bewiesen werden müsse, ob dieser Satz auch stimme. Nun lösen die Schülerinnen und Schüler einschrittige Hypotenusenberechnungen aus dem Buch und tragen die Resultate in eine vom Buch vorgegebene Tabelle ein: Die erste Aufgabe lösen sie in der Klasse mit der Lehrperson zusammen, drei weitere lösen sie selbständig, nachdem die Resultate der ersten Aufgabe verglichen wurden. Bevor die Lektion zu Ende ist werden die drei weiteren Aufgaben noch kurz im Klassenverband besprochen und die Resultate verglichen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A02-P-1103-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass heute der Satz, der am Vortag eingeführt wurde, bewiesen werden soll. In einem Lehr-Lerngespräch führt die Lehrperson den alge...    mehr

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass heute der Satz, der am Vortag eingeführt wurde, bewiesen werden soll. In einem Lehr-Lerngespräch führt die Lehrperson den algebraischen Beweis. Diesen übernehmen die Schülerinnen und Schüler von der Wandtafel in ihr Theorieheft. Wie die Schülerinnen und Schüler mit dem Abschreiben fertig sind, kommt die Lehrperson auf pythagoräische Zahlentrippel zu sprechen. Sie nennt die Zahlentrippel drei, vier, fünf und sechs, acht, zehn als Beispiel. Die Schülerinnen und Schüler nennen weitere Beispiele und suchen anschließend mit Hilfe des Taschenrechners selbständig weitere Beispiele. Nach einigen Minuten sammelt die Lehrperson die weiteren Beispiele an der Wandtafel. Anschließend löst die Klasse Übungsaufgaben. Als erstes wird im Plenum gezeigt, wie vorgegangen werden muss, wenn eine Quadratfläche, die den Summen von zwei gegebenen Quadratflächen entsprechen soll, gesucht ist. Die Schülerinnen und Schüler lösen anschließend zwei ähnliche Aufgaben selbständig. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A03-P-1104-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach der Pause wird der Ergänzungsbeweis zu Ende geführt. Danach macht die Lehrperson einen kurzen geschichtlichen Rückblick zur Person des Pythagoras und lässt danach die Schülerinnen...    mehr

    Nach der Pause wird der Ergänzungsbeweis zu Ende geführt. Danach macht die Lehrperson einen kurzen geschichtlichen Rückblick zur Person des Pythagoras und lässt danach die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras vom Buch ins Theorieheft übernehmen. Nun erarbeitet die Lehrperson mit der Klasse die Prozedur einer Aufgabe, bei der die richtige Bestimmung von Hypotenuse und Katheten in einer Planskizze eine relevante Bedeutung hat. Anschließend lösen die Schülerinnen und Schüler eine Übungsaufgabe zur Seitenberechnung in rechtwinkligen Dreiecken. Dabei schreibt die Lehrperson den Lösungsweg an die Wandtafel. Für die zwei folgenden Aufgaben wird von jeweils einer Schülerin der Lösungsweg an die Wandtafel geschrieben, währenddem die anderen selbständig an ihren Plätzen arbeiten. Die Schülerinnen und Schüler haben genügend Zeit ihre Ergebnisse mit denjenigen an der Wandtafel zu vergleichen. Lösungswege werden nicht besprochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen ...    mehr

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen hat. Die Schülerinnen und Schüler arbeiten in Vierer- oder Fünfergruppen. Sie arbeiten selbständig explorierend. Gemeinsam in der Klasse wird anschließend die mathematische Herleitung des Ergänzungsbeweises nachvollzogen und zur Formel a2+ b2= c2 aufgelöst. (Berechnung der jeweiligen Flächen von a2, b2, vier kongruenten rechtwinkligen Dreiecken/ die Flächen von c2, vier kongruenten rechtwinkligen Dreiecken. Gleichsetzung der beiden grossen Quadrate und die Auflösung davon). Somit ist bewiesen, dass a2+ b2= c2 ist. Danach zeigt die Lehrperson auf dem Hellraumprojektor eine Darstellung und benennt diese als Darstellung des Satzes von Pythagoras. Ein Schüler nennt dazu die Formel a2+ b2= c2. Danach übernehmen die Schülerinnen und Schüler die grafische Darstellung, die Ausformulierung sowie Formel und Titel des Satzes von Pythagoras in ihr Theorieheft. Die Lehrperson bricht die Einzelarbeit am Ende der Stunde ab. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A06-P-1109-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der ersten Stunde der Pythagorasreihe gibt die Lehrperson das Thema bekannt. Danach liest ein Schüler von einer Folie des Hellraumprojektors Daten und weitere Ergänzungen z...    mehr

    Zu Beginn der ersten Stunde der Pythagorasreihe gibt die Lehrperson das Thema bekannt. Danach liest ein Schüler von einer Folie des Hellraumprojektors Daten und weitere Ergänzungen zum Leben des Pythagoras vor. Danach kommt die Klasse auf den Satz des Pythagoras zu sprechen. Die Schülerinnen und Schüler haben schon ein ziemlich fundiertes Wissen und tragen wichtige Punkte zum Satz des Pythagoras zusammen. Danach übertragen die Schülerinnen und Schüler die Formel und die Ausformulierung des Satzes von der Hellraumprojektor- Folie in ihr Formelheft. In der Folge wird besprochen wie der Kehrsatz des Satzes von Pythagoras heißt. Dieser wird an der Wandtafel notiert und die Lernenden übertragen den Kehrsatz direkt in ihr Formelheft. Darauf erzählt die Lehrperson, dass der Satz des Pythagoras schon im Altertum seine Anwendung fand und untermalt dies mit einer Folie einer ägyptischen Wandmalerei, welche die Schülerinnen und Schüler auch in ihrem Schulbuch haben. Darauf diskutiert die Klasse, wofür der Satz des Pythagoras damals wohl gebraucht wurde. Anschließend erzählt die Lehrperson vom Seiltrick und zeigt mit der Unterstützung zweier Schüler diesen mit einer Schnur vor. Damit veranschaulicht die Lehrperson die Konstruktion und Verwendung des rechten Winkels. Die Klasse zählt darauf die Einteilungen der Schnur, um die Seitenlängen zu bestimmen. Zur Veranschaulichung überträgt die Lehrperson das Dreieck auf die Wandtafel und die Klasse überprüft die Seileinteilung rechnerisch. Darauf schreibt die Lehrperson 3e+4e=5e an die Wandtafel und fordert die Lernenden auf, Angaben zu den drei Seiten eines Dreicks zu machen, wenn e als beliebige Zahl angenommen wird. Die Schülerinnen und Schüler nennen zwei Beispiele. Die Lehrperson konstruiert diese Dreiecke mit drei Baumetern und der Mithilfe eines Schülers. In der Folge verlangt die Lehrperson von Neuem die Nennung dreier Seiten eines rechtwinkligen Dreiecks, wobei das bekannte Zahlentrippel und dessen Verfielfältigung mit e diesmal nicht als Berechnungsgrundlage dienen soll. Die Schülerinnen und Schüler finden ein richtiges Beispiel. Die Lehrperson rundet die Sequenz ab, indem sie darauf verweist, dass diese Zahlen, die den Satz des Pythagoras erfüllen, pythagoräische Zahlentrippel genannt werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A09-P-1114-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion wird für einen am Vortag abwesenden Schüler der Satz des Pythagoras, seine Anwendung und die Bezeichnungen im rechtwinkligen Dreieck noch einmal repetiert. An...    mehr

    Zu Beginn der Lektion wird für einen am Vortag abwesenden Schüler der Satz des Pythagoras, seine Anwendung und die Bezeichnungen im rechtwinkligen Dreieck noch einmal repetiert. Anschließend führt die Lehrperson in einem Lehr-Lerngespräch den Ergänzungsbeweis. Die Schülerinnen und Schüler übernehmen den Beweis in ihr Heft, wobei die Lehrperson noch das eine oder andere Missverständnis klärt. Die Lektion endet mit einigen organisatorischen Informationen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A11-P-1118-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der zweiten Lektion sammelt die Lehrperson Puzzleteile der Gruppenarbeit ein sowie die sechs Protokolle der Expertengruppen und gibt den Auftrag, die Aufgabenstellungen ...    mehr

    Zu Beginn der zweiten Lektion sammelt die Lehrperson Puzzleteile der Gruppenarbeit ein sowie die sechs Protokolle der Expertengruppen und gibt den Auftrag, die Aufgabenstellungen der verschiedenen Bauern später ins Heft zu kleben. Danach fasst die Lehrperson den Satz des Pythagoras, den sie in der letzten Stunde an die Wandtafel geschrieben hat, nochmals erklärend zusammen. Anhand einer Folie zeigt die Lehrperson den Lernenden, wie man die Seiten in einem rechtwinkligen Dreieck bezeichnet (Hypotenuse und Katheten). Darauf übertragen die Schülerinnen und Schüler Zeichnung, Beschriftung und Erklärungen in ihr Heft. Aufbauend darauf verteilt die Lehrperson ein Arbeitsblatt mit sechs Aufgaben mit je einem Dreieck. Davon sind drei Dreiecke rechtwinklig und zwei Dreiecke haben keinen rechten Winkel. Die Aufgaben werden ähnlich berechnet wie die Aufgaben der letzten Stunde. Dabei werden die einzelnen Flächenquadrate über den kürzeren zwei Seiten berechnet und zusammengezählt und mit dem Flächenquadrat über der längsten Seite verglichen. Rückgreifend auf die Erkenntnisse der letzten Stunde wird zum Schluss der Aufgaben die Frage gestellt, ob den Schülerinnen und Schülern etwas beim Lösen dieser Aufgaben auffalle (Es geht dabei um den Bezug des Satzes von Pythagoras zu rechtwinkligen, stumpfwinkligen und spitzwinkligen Dreiecken). Das Arbeitsblatt wird von den Schülerinnen und Schülern alleine und selbständig bearbeitet. In der Folge werden die gelösten Aufgaben gemeinsam korrigiert. Die Frage, ob den Lernenden dabei etwas auffalle, wird im gemeinsamen Gespräch erörtert. Dabei findet die Klasse heraus, dass das Messen der Längen gewisse Ungenauigkeiten verursacht und dass der Satz des Pythagoras nur bei Dreiecken mit rechtem Winkel angewendet werden kann. Anschließend liest die Lehrperson zur nochmaligen Wiederholung den ausformulierten Satz des Pythagoras von einer Folie ab. Die Lernenden schreiben diesen in ihr Heft ab. Um die Benennung des Satzes zu klären (bisher wurde diese Regel nicht benannt), kommt die Lehrperson auf die Person des Pytharoras zu sprechen und erzählt einiges über seine Geschichte. So führt sie die Bezeichnung Lehrsatz des Pythagoras ein und die Lernenden übernehmen die Überschrift in ihr Heft. Ebenso kleben sie ein Bildchen von einer Pythagorasstatue in ihr Heft. Währenddem gibt die Lehrperson Hausaufgaben für die nächste Mathematikstunde auf. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A11-P-1118-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion wird das Vorwissen aktiviert: Der Satz des Pythagoras wird von den Schülerinnen und Schülern nochmals benannt und erklärt. Anschließend zeigt die Lehrperson den ...    mehr

    Zu Beginn der Lektion wird das Vorwissen aktiviert: Der Satz des Pythagoras wird von den Schülerinnen und Schülern nochmals benannt und erklärt. Anschließend zeigt die Lehrperson den Inhalt der letzten zwei Lektionen nochmals auf. Anschließend leitet die Lehrperson die Schülerinnen und Schüler an, ein Arbeitsblatt zu bearbeiten. Das machen die Lernenden in Partnerarbeit. Mit dem Arbeitsblatt werden die Lernenden zum Flächenvergleich verschiedener Vierecke und Dreiecke des Ergänzungsbeweises angeleitet. Die Beweisidee soll von den Schülerinnen und Schülern selber mittels kleinschrittig aufgegebenen Aufgabenschritte gefunden werden. Nach dieser Partnerarbeit werden die Lösungen gemeinsam besprochen. Dabei geht die Lehrperson teilweise auf verschiedene Lösungswege der Schülerinnen und Schüler ein und schreibt wesentliche Schritte zur Lösung der drei Aufgaben an die Wandtafel. Dabei schreiben die Schülerinnen und Schüler allfällige Ergänzungen zu ihren Notizen ins Heft. Danach diktiert die Lehrperson den Lernenden eine kurze, prägnante Erklärung des Zerlegungsbeweises, welche die Schülerinnen und Schüler ebenso in ihr Heft schreiben. Am Hellraumprojektor stellt darauf die Lehrerin einen weiteren Lösungsweg einer Schülerin vor. Danach wird der algebraische Weg des Ergänzungsbeweises an der Wandtafel gemeinsam erarbeitet. Die Schülerinnen und Schüler schreiben das eben Erarbeitete in ihr Heft ab. Zum Schluss der Lektion werden organisatorische Dinge geregelt, bei denen es um Hausaufgaben und die nächste Mathematiklektion geht. (Projekt)     weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation