DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: EINFUEHRUNG (Filter: Schlagwörter)
Anzahl der Treffer: 57
Filtern nach:
  • Satzgruppe des Pythagoras (A19-P-1223-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dies...    mehr

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dieser Darstellung teilt sie auch an die Schülerinnen und Schüler aus. Ihre Aufgabe ist es, zu zweit den Lösungsweg zur Berechnung der Länge der für die Herstellung eines solchen Daches benötigten Dachsparren zu finden, wenn das Dreieck, das die beiden Dachschrägen und die Parallele zum Boden bilden, im Giebel rechtwinklig ist. Auch die Länge eines solchen Teildaches und der Punkt, wo dieses von der Höhe durch den Giebel geteilt wird, sind den Schülerinnen und Schülern bekannt. Nach etwa zehn Minuten wird im Plenum besprochen, auf was für Lösungsansätze die Schülerinnen und Schüler gekommen sind. Eine Schülerin schlägt vor, das Dreieck zu konstruieren und die Länge der Dachsparren durch Messen zu bestimmen. Auch fällt das Stichwort "Strahlensätze", woran die Lehrperson das weiterführende Lehr-Lerngespräch anknüpft. An der Wandtafel hängt die Lehrperson ein rechtwinkliges Dreieck aus braunem Papier auf und lässt einen Schüler die zwei Teildreiecke aus blauem Papier, die durch das Einzeichnen der Höhe entstünden, exakt darüber hängen. Dieser Schüler ist es auch, der behauptet, alle diese Papierdreiecke seien zueinander ähnlich. Dies wird durch die Lehrperson bestätigt und für die anderen Schülerinnen und Schüler durchsichtig gemacht. Nun hängt die Lehrperson ein weiteres zum braunen Dreieck identisches Papierdreieck an die Wandtafel. Ein Schüler hängt eines der blauen Dreiecke so auf das zweite braune, dass die Klasse sieht, wie der zweite Strahlensatz auf diese beiden Dreiecke angewendet werden kann. Die Lehrperson schreibt alle bekannten Grössen aus der Dachsparrenaufgabe in Zahlen, die unbekannten in Buchstaben auf die beiden Dreiecke. Mit diesen Angaben stellt die Klasse die Verhältnisgleichung auf und rechnet so die eine Kathete des braunen Dreiecks aus. Anschließend schreiben, zeichnen und kleben die Schülerinnen und Schüler den ganzen Lösungsweg von der Wandtafel ab. Dabei überlegen sie sich bereits den Lösungsweg zur Berechnung des anderen Dachsparrens. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A20-P-1225-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbr...    mehr

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbrink einen Landtausch an. Zwei kleine quadratische Felder sollen in ein angrenzendes großes quadratisches Feld umgetauscht werden. Der Bauer weiß nicht recht, ob er dem Handel zustimmen soll, doch seine Nichte berechnet die Flächen der Felder und rät ihrem Onkel auf den Tausch einzusteigen. Von dem Handel erzählt Bauer Piepenbrink am Stammtisch. Seine zwei Kollegen, Bauer Plattfuß und Bauer Großmaul, wollen daraufhin auch zwei kleine quadratische Felder in ein großes quadratisches Feld umtauschen. Die Lehrperson teilt die Pläne, wie die Felder der Bauern liegen an die Schüler aus. Jede Gruppe bearbeitet eine Felderkombination. Sie sollen herausfinden, ob sich der Tausch für "ihren" Bauern lohnt. Bei Bauer Piebenbrink bilden die Felderquadrate, die an den Ecken zusammenstossen in der Mitte einen Leerraum in Form eines rechtwinkligen Dreiecks, bei Bauer Plattfuß ein stumpfwinkliges, bei Bauer Großmaul ein spitzwinkliges Dreieck. Die Schülergruppen präsentieren ihre Erkenntnisse. Sie haben festgestellt, dass bei Bauer Piepenbrink die Flächen der kleinen Quadrate zusammen die Fläche des großen Quadrates ergibt, bei Bauer Plattfuss das große Quadrat größer und bei Bauer Großmaul kleiner, als die Flächen der beiden kleinen Quadrate zusammen. Ein Schüler, der Bauer Piepenbrinks Felder bearbeitet hat, vermutet, dass die Flächengleichheit mit dem rechtwinkligen Dreieck zwischen den Feldern zu tun hat. So kommt die ganze Klasse auf die Dreiecke zwischen den Feldern zu sprechen, und stellt fest, dass bei den Quadraten, die um das rechtwinklige Dreieck angeordnet sind, die Flächen der beiden kleineren zusammen die Fläche des größeren ergeben. Da nun scheinbar oft von rechtwinkligen Dreiecken gesprochen wird, führt die Lehrperson die Bezeichnungen im rechtwinkligen Dreieck ein. Mit den neu erlernten Begriffen versuchen die Schülerinnen und Schüler im Plenum ihre Erkenntnisse bezüglich der Quadrate über den Dreiecksseiten in einem Satz zu formulieren. Schließlich wird eine befriedigende Formulierung gefunden. Diese schreiben die Schülerinnen und Schüler in ihre Theorieblätter. Anschließend überprüfen sie den behaupteten Satz selbständig an einigen Übungsaufgaben aus dem Buch. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B01-P-2101-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler...    mehr

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler spontan. Ausgehend von der Frage wie „draußen auf dem Feld“ im rechten Winkel gebaut werden könne, zeigt die Lehrperson, dass mit einer Schnur ein rechtwinkliges Dreieck entsteht, wenn die Längen der drei Schnurabschnitte im Verhältnis drei, vier und fünf zueinander stehen. Danach fordert die Lehrperson die Schüler und Schülerinnen auf, in Gruppen zu diskutieren und herauszufinden wie die Zahlen der pythagoräischen Zahlentripeln mathematisch zusammenhängen. Dazu wird ein Blatt mit verschiedenen Zahlentripeln abgegeben. An einem Gruppentisch ist der Satz des Pythagoras bereits bekannt. Diese Schülerinnen und Schüler werden nun auf die anderen Gruppen verteilt, um so ihr Wissen an den Rest der Klasse weiterzugeben. Um die Aussagen der Schülerinnen und Schüler zu bestätigen, stellt die Lehrperson den Satz des Pythagoras an der Wandtafel mit einem roten Hypotenusen- und grünen Kathetenquadraten graphisch dar. Danach berechnen die Schülerinnen und Schüler mit dem neu gelernten Satz selbständig die fehlenden Seiten von verschiedenen rechtwinkligen Dreiecken, ohne dass die Lehrperson vorgezeigt hat, wie solche Aufgaben zu lösen sind. Nachdem die Schülerinnen und Schüler Gelegenheit hatten, ihre Resultate zu korrigieren, erhalten sie ein Blatt, auf dem sie die Pythagorasfigur entsprechend der Wandtafeldarstellung anmalen und in ihr Theorieheft einkleben. Danach werden in Stillarbeit weitere Dreiecksseiten berechnet und kontrolliert. Um die Lektion abzurunden, wiederholt die Lehrperson vor der Pause das in dieser Lektion Gelernte. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B02-P-2102-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lehrperson eröffnet die Stunde, indem sie die Schülerinnen und Schüler auffordert, benötigtes Material zur Geometrie hervor zu holen. Danach gibt die Lehrperson das neue Thema ...    mehr

    Die Lehrperson eröffnet die Stunde, indem sie die Schülerinnen und Schüler auffordert, benötigtes Material zur Geometrie hervor zu holen. Danach gibt die Lehrperson das neue Thema „Der Satz des Pythagoras“ bekannt. Sie erzählt von Pythagoras, was er gemacht und herausgefunden hat. Nachdem die Lehrperson eine grafische Darstellung mit den Quadratflächen über den Seiten an der Wandtafel erstellt und die Formel a2+b2=c2 dazu geschrieben und erläutert hat, zeigt sie an der Wandtafel mit Hilfe von Papierquadraten und Dreiecken den Ergänzungsbeweis. Die Lehrperson erzählt noch die Geschichte von Pythagoras und seinen Errungenschaften fertig, bevor sie ein Theorieblatt mit dem Satz des Pythagoras als Formel und dessen Beweis den Lernenden verteilt. Anhand dieses Blattes erklärt die Lehrperson anschließend die Umformungen der pythagoräischen Formel. Danach erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schülern die Lösungsprozedur einer einschrittigen Aufgabe zur Seitenberechnung im rechtwinkligen Dreieck. Nachdem eine ähnliche weitere bearbeitet wurde, arbeiten die Schülerinnen und Schüler selbständig im Buch an ähnlichen einschrittigen Aufgaben weiter. Während der Schülerarbeitsphase unterbricht die Lehrperson kurz die Einzelarbeit, um zu erklären, dass der rechte Winkel bei Aufgabe zwei immer bei C ist. Zum Schluss gibt die Lehrperson die Hausaufgaben bekannt und gibt den Lernenden noch einen allgemeinen Hinweis über das Lernen, wie man an Aufgaben herangeht. Die Lernenden sollen, um Fehler zu vermeiden, die Instruktionen genau lesen und befolgen und nur berechnen, was gefragt ist. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B03-P-2103-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will wissen, ob jemand Pythagoras und dessen berühmten Satz kennt. Nachdem eine Schülerin diesen genannt hat, ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will wissen, ob jemand Pythagoras und dessen berühmten Satz kennt. Nachdem eine Schülerin diesen genannt hat, erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schüler in einem Klassengespräch die Grundprinzipien des Satzes. Sie hält die erarbeitete Theorie fortlaufend in einer grafischen Darstellung an der Wandtafel fest. Indem die Lehrperson die Quadrate über den Dreiecksseiten zeichnet, veranschaulicht sie auf geometrische Weise a2+b2=c2. Danach führt die Lehrperson wiederum in einem fragend-entwickelnden Klassengespräch einen algebraischen Beweis durch. Danach verteilt die Lehrperson ein Merkblatt, welches von den Schülerinnen und Schülern noch fertig bearbeitet werden muss. Die Schülerinnen und Schüler übernehmen dabei das neu Gelernte auf ihr Blatt. Im Anschluss an die Einzelarbeit erarbeitet die Lehrperson zusammen mit den Lernenden die allgemeine Formulierung des Satzes. Danach wird gemeinsam die Lösungsprozedur dreier verschiedener Aufgaben, welche in dieser Form noch nicht bearbeitet wurden, gelöst. Es handelt sich um zwei Konstruktionsaufgaben, in denen ein Quadrat mit einem bestimmten Flächeninhalt konstruiert werden soll und um eine Berechnungsaufgabe, wo es um die Berechnung einer Seite im rechtwinkligen Dreieck geht. Fünf Minuten vor Schluss haben die Lernenden noch Gelegenheit, selber einen weiteren Beweis, einen Zerlegungsbeweis, handelnd zu entdecken. (Projekt)     weniger

  • Satzgruppe des Pythagoras (B04-P-2104-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Hinweisen. Die Lehrperson gibt wenige Angaben zum Leben des Pythagoras und kommt so schnell auf dessen mathematische Tätigkeit und a...    mehr

    Die Lektion beginnt mit einigen organisatorischen Hinweisen. Die Lehrperson gibt wenige Angaben zum Leben des Pythagoras und kommt so schnell auf dessen mathematische Tätigkeit und auf den Satz des Pythagoras zu sprechen: Zuerst legt sie die Beschriftung im rechtwinkligen Dreieck fest und formuliert anschließend den Satz des Pythagoras, welchen sie dann auch gleich mit dem Ergänzungsbeweis beweist. Anschließend übernehmen die Schülerinnen und Schüler den Satz und seinen Beweis in ihr Theorieheft. Wie sie damit fertig sind, nimmt die Lehrperson das Lehr-Lern-Gespräch wieder auf: Die Schülerinnen und Schüler benennen die Katheten und Hypotenusen in verschiedenen Dreiecken. Danach werden unter der Leitung der Lehrperson die fehlenden Seiten von sechs Dreiecken berechnet. Weil dabei pythagoräische Zahlentripel als Lösung entstehen, verweist die Lehrperson auf die Primfaktorenzerlegung, die dann bei den folgenden Beispielen auch angewendet wird. Anschließend werden verschiedene Zahlentripel gebildet, ausgerechnet und gesucht. Vor dem Ende der Lektion werden dann noch zwei weitere Dreiecke berechnet. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B05-P-2105-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Bemerkungen erteilt die Lehrperson einen neuen Auftrag. Es handelt sich um eine Vorbereitungsaufgabe, die Voraussetzung für die problemorientierte Er...    mehr

    Nach einigen organisatorischen Bemerkungen erteilt die Lehrperson einen neuen Auftrag. Es handelt sich um eine Vorbereitungsaufgabe, die Voraussetzung für die problemorientierte Erarbeitung des neuen Inhalts, welchen die Lehrperson aber nicht verraten will, ist. Die Schülerinnen und Schüler erhalten farbige Papierstreifen, die sie in Dreiecke schneiden und dann nach einer bestimmten Vorlage ins Heft kleben müssen. Die Schülerinnen und Schüler sollen die rechtwinkligen Dreiecke so anordnen, dass zwei identische Quadrate entstehen, die jeweils vier der farbigen rechtwinkligen Dreiecke und eine weiße quadratische Fläche, beziehungsweise zwei weiße unterschiedlich große quadratische Flächen, enthalten. Sie arbeiten in Einzelarbeit. Nachdem die ersten Lernenden mit dem Auftrag fertig sind, erteilt die Lehrperson einen weiteren Auftrag. Die Lernenden sollen versuchen, Tatsachen zu den Quadraten herauszufinden. Anschließend an diese explorative Einzelarbeit bespricht die Lehrperson die gefundenen Behauptungen mit den Schülerinnen und Schülern. Gemeinsam finden sie heraus, dass die beiden kleinen weißen quadratischen Flächen gleich groß sein müssen wie die große weiße Fläche im anderen Quadrat. Anschließend an diese Erkenntnis erarbeitet die Lehrperson zusammen mit der Klasse einen Ergänzungsbeweis. Die Lehrperson notiert fortwährend an der Wandtafel. Zwei neue Begriffe „Kathete und Hypotenuse“ werden während der Beweisführung eingeführt. Bevor die Lernenden die Wandtafeldarstellung in ihr Heft übernehmen, um das Gelernte zu vertiefen, gibt die Lehrperson kurz einen geschichtlichen Hintergrund, wer die Formel a2+b2=c2 herausgefunden und wo diese Person gelebt hat. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B06-P-2106-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreibe...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreiben und die aufgeschriebenen Aufträge dann auch ausführen: Sie sollen sechs Quadrate, die die Seitenlängen von zwei pythagoräischen Zahlentripeln aufweisen, ausschneiden, die zusammengehörenden zu Pythagorasfiguren zusammenlegen und ihre Beobachtungen dazu schriftlich festhalten. Während die Schülerinnen und Schüler die Aufträge zur Exploration des Satzes von Pythagoras der Reihe nach ausführen, erklärt die Lehrperson, was mit „zu einem Dreieck zusammenlegen“ gemeint ist, eben die Pythagorasfigur legen. Schließlich geht die Lehrperson den Aufgabenkatalog Punkt für Punkt durch, die Schüler geben ihre Beobachtungen an die Klasse weiter. Da der Satz des Pythagoras bei einigen Schülern schon bekannt ist, kommt dieser als Beobachtung bald zur Sprache. An dieser Stelle erklärt die Lehrperson, was der Satz des Pythagoras ist. Danach wird ein weiterer Punkt aus dem Katalog besprochen, was die Lehrperson dazu verleitet, der Klasse etwas über den Mathematiker und Philosophen Pythagoras aus dem Lexikon vorzulesen. Schließlich wird der letzte Punkt besprochen: Weitere Dreiecke suchen, von denen die Summe zweier Seitenquadrate das Quadrat der dritten ergibt. Danach sollen die Schüler selbständig einen Eintrag in ihr Theorieheft machen. Bevor der Film zu Ende ist, beginnt die Lehrperson den Beweis an Hand des Kathetensatzes vorzuzeigen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B07-P-2107-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will mit den Lernenden den Satz des Pythagoras kennenlernen und schauen, wie Pythagoras zu dieser Erkenntnis g...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will mit den Lernenden den Satz des Pythagoras kennenlernen und schauen, wie Pythagoras zu dieser Erkenntnis gelangte. Problemorientiert entwickelt die Lehrperson mit der Klasse den Satz von Pythagoras. Sie lässt die Lernenden auf dem verteilten Blatt ein Quadrat mit einer vorgegebenen Länge zeichnen. Das rechtwinklige Dreieck, welches sie über der oberen Kante mit Hilfe des Thaleskreises konstruieren sollen, lässt die Lehrperson die Schülerinnen und Schüler frei wählen, damit zu einem späteren Zeitpunkt bewiesen werden kann, dass der Satz von Pythagoras in jedem rechtwinkligen Dreieck Gültigkeit hat. Über den Katheten des rechtwinkligen Dreiecks lässt die Lehrperson die Lernenden die Kathetenquadrate einzeichnen. Während die Schülerinnen und Schüler in Einzelarbeit die drei entstandenen Quadrate einfärben, ermuntert die Lehrperson diejenigen Schülerinnen und Schüler, die schon fertig sind, sich zu überlegen, was wohl Pythagoras herausgefunden hat. Nach dieser Einzelarbeit nennt ein Schüler die Idee, dass die beiden kleinen Quadrate zusammen die gleiche Fläche haben wie das große Quadrat. Die Lehrperson übernimmt diesen Gedanken und erarbeitet gemeinsam mit den Schülerinnen und Schüler allgemeine Formulierungen. Die Lehrperson kann nun folgende Gleichung an die Wandtafel schreiben: c2=b2+a2. Zu dieser Formel lässt die Lehrperson die Schülerinnen und Schüler einen Zerlegungsbeweis ausführen. Sie lässt die Lernenden die Quadrate über den Katheten in zwei, beziehungsweise drei Flächen einteilen. Die so entstandenen Stücke schneiden die Schülerinnen und Schüler aus und versuchen diese im Quadrat über der Hypotenuse selbständig entdeckend auszulegen. Wem dies gelungen ist, hilft anderen. Während dieser Schülerarbeitsphase legt die Lehrperson als Hilfe auf dem Hellraumprojektor eine mögliche Anordnung der Flächen auf dem Hypotenusenquadrat auf. Nachdem jeder Lernende die Möglichkeit hatte, eine Lösung zu finden, verteilt die Lehrperson ein Theorieblatt, um die eben gelernten Inhalte zu vertiefen. Jede Schülerin und jeder Schüler erhält Gelegenheit, das Blatt zu studieren. Danach werden in der Klasse die Begriffe "Kathete" und "Hypothenuse" erörtert. Das Theorieblatt enthält einen weiteren Beweis, den die Lehrperson aus Zeitmangel auf die nächste Stunde verschiebt. Nachdem eine Schülerin den Satz nochmals laut vorgelesen hat, zeigt die Lehrperson anhand eines Zahlenbeispiels, wie man mit dem Satz von Pythagoras Seiten im rechtwinkligen Dreieck berechnen kann. Sie zeigt, wie man aus den beiden Katheten die Hypothenuse berechnen kann. Im Anschluss daran, lösen sie gemeinsam drei ähnliche einschrittige Aufgaben. Die Lehrperson schließt die Stunde, indem sie die Hausaufgaben bekannt gibt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B08-P-2108-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    In einer längerdauernden öffentlichen problemorientierten Phase (Zahlentripel) wird der Satz des Pythagoras problemorientiert erarbeitet. Zuerst gibt die Lehrperson dazu den Schüleri...    mehr

    In einer längerdauernden öffentlichen problemorientierten Phase (Zahlentripel) wird der Satz des Pythagoras problemorientiert erarbeitet. Zuerst gibt die Lehrperson dazu den Schülerinnen und Schülern den Auftrag, ein rechtwinkliges Dreieck zu zeichnen, dieses zu beschriften und die Seiten zu messen. Danach werden von den Schülerinnen und Schülern die Maße dreier, von ihnen gezeichneter Dreiecke diktiert, und die Lehrperson schreibt die Maße an die Wandtafel. Darauf trägt die Klasse in einem entwickelnden Lehr- und Lerngespräch beobachtbare Zusammenhänge zwischen den Dreieckseiten ihrer gezeichneten rechtwinkligen Dreiecke zusammen. Ergänzend dazu schreibt die Lehrperson das Zahlentripel 3, 4, 5 an die Wandtafel und gibt den Schülerinnen und Schülern den Auftrag die Quadratzahlen der Seitenlängen von ihrem und von diesem Dreieck zu berechnen. Dies geschieht alles in einer öffentlichen Phase und in der Folge des entwickelnden Lehr- und Lerngesprächs wird die Formel des Pythagoras genannt. Diese wird von der Klasse mit den Beispielen an der Wandtafel überprüft. Dabei stellt die Klasse fest, dass aufgrund von Messungen Ungenauigkeiten auftreten. Die Lehrperson äußert dazu, dass die Formel von Pythagoras aber trotzdem als allgemeingültig angenommen werden kann. Die Formel a2+b2 =c2 wird von der Lehrperson an die Wandtafel geschrieben. In der Folge entwickelt die Lehrperson mit der Klasse problemorientiert einen Beweis des Satzes von Pythagoras. Dabei wird zuerst anhand eines entwickelnden Lehr- und Lerngesprächs besprochen, wie die Quadratzahlen grafisch dargestellt werden. Darauf wird die Formel a2+b2 =c2 von den Schülerinnen und Schülern mit ihren Legeformen aus Plastik dargestellt, die Lehrperson zeigt es gleichzeitig am Hellraumprojektor vor. Nun gibt die Lehrperson die Anweisung, aus den vorhandenen Dreiecken und Vierecken zwei deckungsgleiche Vierecke zu bauen. Die zwei deckungsgleichen Vierecke entsprechen der grafischen Darstellung des Ergänzungsbeweises. Da einigen Schülerinnen und Schülern das Material fehlt, arbeiten sie in Gruppen. In der nächsten Phase entwickelt die Lehrperson auf der Basis der gelegten Quadrate den Beweis. Darauf benennt die Lehrperson die Formel als Satz des Pythagoras. Bei der Erläuterung des Arbeitsplans, macht die Lehrperson die Lernenden darauf aufmerksam, dass sie in den nächsten Wochen mit dieser Formel rechnen werden. Die Lehrperson erklärt weitere organisatorische Belange genau: Das selbständige Aufstellen des Zeitrahmens, die Anzahl der Aufgaben, welche von den Lernenden bearbeitet werden und die Arbeitsform (Arbeit in Gruppen). Zum Schluss der Stunde gibt die Lehrperson den Auftrag, einen Theoriehefteintrag zu schreiben. Dafür schreiben die Schülerinnen und Schüler die Anschriften der Wandtafel und einen Teil des Beweises ab und einen anderen Teil des Beweises, den sie auf einem Blatt erhalten haben, kleben sie ins Heft. Wer mit dieser Arbeit nicht fertig wird, macht sie nach der Pause fertig. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation