Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: HERLEITUNG (Filter: Schlagwörter)
Anzahl der Treffer: 63
  • Satzgruppe des Pythagoras (A01-P-1101-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Leh...    mehr

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Lehrperson einen Plan der Schwimmstrecke an die Wandtafel. In einer Meeresbucht muss vom Strand zu einer Boje, dann parallel zum Stand zu einer anderen Boje und wieder zurück zum Strand geschwommen werden. Ein Schüler zeichnet an der Wandtafel die zu schwimmen ideale Strecke ein. Da alle 1400 Schwimmer gleichzeitig starten, ist die Schwimmstrecke vom Strand zur ersten Boje für den zu äußerst startenden Schwimmer bedeutend weiter, als die ideale Strecke. Ein anderer Schüler zeichnet an der Wandtafel den Weg dieses Schwimmers ein. Dabei wird festgestellt, dass die erste, ideale Strecke rechtwinklig zum Strand steht. Nach einer ersten Schätzung fragt die Lehrperson die Schülerinnen und Schüler, ob sie einen Lösungsvorschlag hätten, die genaue Differenz der idealen und der äußersten Schwimmstrecke zu berechnen. Aus den Schüleraussagen kann sie dann entnehmen, dass irgendwo im Schulhaus der Satz des Pythagoras dargestellt wird, und dass die Schülerinnen und Schüler sich diese Darstellungen schon angesehen, wenn auch nicht vollständig verstanden haben. Die Lehrperson lässt die noch etwas unklaren Äusserungen der Schülerinnen und Schüler stehen und benennt zuerst mit Hilfe der Klasse Katheten und Hypotenuse im rechtwinkligen Dreieck an der Wandtafel. An Hand dieser Bezeichnungen und Beschriftung gelingt es nun einem Schüler für das Dreieck an der Wandtafel den Satz des Pythagoras richtig zu formulieren. Am Hellraumprojektor ist der Satz und eine ausgedeutschte Fassung davon zu sehen. Die Schülerinnen und Schüler lesen die beiden Varianten und erklären kurz in eigenen Worten, wie sie das verstehen. Auf die Frage, was der Satz denn nun bringt, fallen die Antworten „Hausbau“ und „Berechnung einer Entfernung“. Mündlich wird besprochen, wie bei einer solchen Berechnung vorgegangen werden müsste und wie die Umformungen des Satzes funktionieren. Während der Einkreisung des Satzes von Pythagoras, die Beschriftung und Bezeichnungen im rechtwinkligen Dreieck und schliesslich der Satz selber, wurden an der Wandtafel immer wieder Notizen zur Veranschaulichung des Gesagten gemacht. Diese Darstellungen übernehmen die Schülerinnen und Schüler nun in ihr Heft. Anschliessend berechnen die Schülerinnen und Schüler mit Hilfe der Lehrperson gemeinsam die Differenz zwischen der idealen und der äußersten Schwimmstrecke der Triathlonaufstellung und übernehmen dann Skizze und Berechnungen von der Wandtafel in ihr Heft. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A01-P-1101-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der anschließenden Lektion arbeiten die Schülerinnen und Schüler am Hefteintrag weiter. Danach wird ein rechtwinkliges Dreieck auf einer Projektorfolie noch einmal richtig...    mehr

    Zu Beginn der anschließenden Lektion arbeiten die Schülerinnen und Schüler am Hefteintrag weiter. Danach wird ein rechtwinkliges Dreieck auf einer Projektorfolie noch einmal richtig beschriftet, Hypotenuse und Katheten werden festgelegt. Da dieses Dreieck anders beschriftet ist, als das Dreieck der letzten Stunde, formuliert ein Schüler den Satz des Pythagoras für dieses Dreieck. Danach gibt die Lehrperson eine Strategie bekannt, wie zur korrekten Berechnung eines rechtwinkligen Dreiecks mit dem Satz des Pytagoras vorgegangen werden muss: Es muss immer zuerst die Hypotenuse bestimmt werden. Nach einem kurzen Unterbruch, folgt eine Übungssequenz in welcher die Schülerinnen und Schüler selbständig den Satz des Pythagoras für gegebene rechtwinklige Dreiecke formulieren und von weiteren die fehlende Seite berechnen. Anschließend werden die Resultate kontrolliert und die Lösungswege dazu bekanntgegeben. Wie alle Aufgaben korrigiert sind, hält die Lehrperson einen geschichtlichen Vortrag über das Leben und Wirken des Pythagoras. Vor dem Ende der Lektion werden die Hausaufgaben bekannt gegeben. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A02-P-1103-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben, dabei gibt die Lehrperson auch bekannt, dass in dieser und den folgenden Lektionen ein wichtiger Satz der Geometrie geler...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben, dabei gibt die Lehrperson auch bekannt, dass in dieser und den folgenden Lektionen ein wichtiger Satz der Geometrie gelernt werden soll. Dann repetiert die Klasse als erstes, wie ein - in diesem Fall rechtwinkliges - Dreieck beschriftet wird. Die entsprechenden Ausführungen hält die Lehrperson an der Wandtafel fest. An Hand dieses rechtwinkligen Dreiecks werden dann die Begriffe Kathete und Hypotenuse eingeführt. Danach lässt die Lehrperson zwei Schüler ein Werbeplakat aufhängen, auf dem über den Seiten eines rechtwinkligen Dreiecks mit den Seitenverhältnissen drei, vier und fünf Quadrate aus Rittersportschokolade geklebt wurden. Daran dass die Schülerinnen und Schüler sehen, dass neun plus sechzehn gleich fünfundzwanzig ist, stellt die Lehrperson die Behauptung auf, dass im rechtwinkligen Dreieck immer die Summe der Flächen der Kathetequadrate der Fläche des Hypotenusenquadrates entspricht. Dazu zeichnet die Lehrperson die Pythagorasfigur an die Wandtafel. Anschließend haben die Schülerinnen und Schüler Zeit, das rechtwinklige Dreieck mit den korrekten Beschriftungen, die Pythagorasfigur und den Satz des Pythagoras von der Wandtafel in ihr Theorieheft zu übernehmen. Als einige der Schülerinnen und Schüler mit dem Abschreiben fertig sind, fordert sie die Lehrperson auf, eine sprachliche Formulierung für den ins Heft geschriebenen Satz "a2+b2=c2" zu finden. Aus den Beiträgen der Schülerinnen und Schüler formuliert die Lehrperson einen vollständigen Merksatz und schreibt diesen an die Wandtafel. Die Schülerinnen und Schüler schreiben ihn ab. Abschliessend erklärt die Lehrperson, dass aber - in einer weiteren Stunde - noch bewiesen werden müsse, ob dieser Satz auch stimme. Nun lösen die Schülerinnen und Schüler einschrittige Hypotenusenberechnungen aus dem Buch und tragen die Resultate in eine vom Buch vorgegebene Tabelle ein: Die erste Aufgabe lösen sie in der Klasse mit der Lehrperson zusammen, drei weitere lösen sie selbständig, nachdem die Resultate der ersten Aufgabe verglichen wurden. Bevor die Lektion zu Ende ist werden die drei weiteren Aufgaben noch kurz im Klassenverband besprochen und die Resultate verglichen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A03-P-1104-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der ersten Lektion der Pythagorasreihe klärt die Lehrperson organisatorische Belange bezüglich der Lektion. Darauf werden die Bezeichnungen des Dreiecks anhand eines fragen...    mehr

    Zu Beginn der ersten Lektion der Pythagorasreihe klärt die Lehrperson organisatorische Belange bezüglich der Lektion. Darauf werden die Bezeichnungen des Dreiecks anhand eines fragendentwickelnden Lehrgesprächs wiederholt. In einem darstellenden Lehrgespräch erläutert die Lehrperson nun die Bezeichnung Hypotenuse und Kathete. Danach zeichnen die Schülerinnen und Schüler ein rechtwinkliges Dreieck in ihr Heft und beschriften dieses gemäß dem eben Besprochenen, das auch an der Wandtafel steht. Nun erteilt die Lehrperson einen neuen Auftrag, bei dem die Lernenden ein Dreieck mit vorgegebenen Maßen konstruieren und beschriften (drei verschiedene Maße). Die Lehrperson zeigt die Konstruktion der Flächenquadrate über der Hypotenuse und den Katheten auf, worauf die Schülerinnen und Schüler diese in einer Stillarbeitsphase konstruieren. Diese quadratische Darstellung mit Quadratflächen über den Seiten gilt im Weiteren als Grundlage, um den Satz des Pythagoras problemorientiert zu entwickeln. In der nächsten Phase mit selbständiger Schülerarbeit berechnen die Schülerinnen und Schüler die Quadratflächen der Seiten ihrer Dreiecke und erhalten zusätzlich den Auftrag, diese zu vergleichen und zu schauen, ob ihnen etwas auffällt. Im folgenden gemeinsamen Lehr- und Lerngespräch wird der Satz des Pythagoras von einer Schülerin als Formel genannt und der Lehrer bestätigt diese mit der ausformulierten Version des Satzes von Pythagoras. Zum Schluss der Lektion beginnt die Lehrperson mit der Erarbeitung eines Ergänzungsbeweises. Dabei wird der Ergänzungsbeweis mit einem Lehr- und Lerngespräch auf geometrische und mathematische Weise erarbeitet. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue...    mehr

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue Quadrate (entsprechen a2, b2) und ein grünes (entspricht c2) Quadrat. Der Auftrag dazu lautet: Vergleiche die grünen und die zwei blauen Flächen (=Grundlage für Ergänzungsbeweis). Das wird zuerst gemeinsam in der Klasse besprochen. Dabei äußern die Schülerinnen und Schüler verschiedene Vermutungen, welche Figur größer ist. In der Folge leitet die Lehrperson die Schülerinnen und Schüler an, diese Vermutungen zu überprüfen und zu begründen oder zu beweisen. Daraufhin schieben die Schülerinnen und Schüler ihre Tische zu Gruppentischen zusammen (jeweils vier bis fünf Schülerinnen und Schüler). Danach verteilt die Lehrperson Arbeitsblätter, auf denen dieselben Quadrate abgebildet sind. Die Schülerinnen und Schüler arbeiten nun in ihren Gruppen selbständig entdeckend, wobei sie die Quadrate ausschneiden/ zerschneiden oder indem sie berechnen können. Die Lehrperson unterbricht diese Sequenz und nun sammelt die Klasse die Gruppenergebnisse. Diese werden jeweils von einer Gruppe vorgestellt und die Lehrperson schreibt die Ergebnisse an die Wandtafel. Die Klasse einigt sich mehr oder weniger darauf, dass die Flächen mit Einbezug von Messungenauigkeiten gleich groß sind. Danach stellt die Lehrperson den Beginn eines mathematischen Lösungsweges einer der fünf Gruppen vor. Dieser Lösungsweg entspricht dem Ergänzungsbeweis. Die Lehrperson leitet die Gruppen nun dazu an, die zwei Flächen c2+ vier Dreiecke und a2+ b2+ vier Dreiecke zu berechnen und zu vergleichen. In der Klasse wird aufgrund von Schwierigkeiten einzelner Schülerinnen und Schüler das Vorgehen schrittweise besprochen und von Schülerinnen und Schülern erklärt. Die Lösungen berechnen die Schülerinnen und Schüler in Vierer- oder Fünfergruppen. Die Gruppenarbeit wird durch eine Pause unterbrochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen ...    mehr

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen hat. Die Schülerinnen und Schüler arbeiten in Vierer- oder Fünfergruppen. Sie arbeiten selbständig explorierend. Gemeinsam in der Klasse wird anschließend die mathematische Herleitung des Ergänzungsbeweises nachvollzogen und zur Formel a2+ b2= c2 aufgelöst. (Berechnung der jeweiligen Flächen von a2, b2, vier kongruenten rechtwinkligen Dreiecken/ die Flächen von c2, vier kongruenten rechtwinkligen Dreiecken. Gleichsetzung der beiden grossen Quadrate und die Auflösung davon). Somit ist bewiesen, dass a2+ b2= c2 ist. Danach zeigt die Lehrperson auf dem Hellraumprojektor eine Darstellung und benennt diese als Darstellung des Satzes von Pythagoras. Ein Schüler nennt dazu die Formel a2+ b2= c2. Danach übernehmen die Schülerinnen und Schüler die grafische Darstellung, die Ausformulierung sowie Formel und Titel des Satzes von Pythagoras in ihr Theorieheft. Die Lehrperson bricht die Einzelarbeit am Ende der Stunde ab. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A05-P-1107-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identisch...    mehr

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identische Rechtecke mit den Seiten a und b zu einem Quadrat zusammengefügt wurden, so dass in der Mitte ein kleines Quadrat mit der Seitenlänge (a-b) entsteht. Als erstes schreiben die Schülerinnen und Schüler alle Teilseiten des großen Quadrates mit a und b an. Dann wird in der Klasse die Fläche des Quadrates durch a und b ausgedrückt und an der Wandtafel aufgeschrieben. Anschließend zeichnen die Schülerinnen und Schüler die Diagonalen der Rechtecke, die sie c nennen, ein, so dass diese ein neues Quadrat bilden. In der Klasse wir vor allem durch die Lehrperson gezeigt, dass es sich dabei auch tatsächlich um ein Quadrat handelt. Von dieser neuen Figur (ein Quadrat, bestehend aus vier rechtwinkligen Dreiecken und einem kleineren Quadrat) wird die gesamte Fläche durch die Teilflächen ausgedrückt und mit der ersten Gleichung gleichgesetzt. An der Wandtafel wird die Gleichung nun auf den Satz des Pythagoras vereinfacht. Die ganze Herleitung wird von den Schülerinnen und Schülern auf das Blatt abgeschrieben. Anschließend wendet sich die Klasse der Verwendung des Satzes von Pythagoras zu. Mit Hilfe der Lehrperson wird die Formel zur Berechnung der Quadratdiagonalen hergeleitet. Danach werden ganzzahlige pythagoräische Zahlentrippel gesucht und benannt. Die griechischen Bezeichnungen für die Seiten im rechtwinkligen Dreieck werden repetiert und auf die pythagoräischen Zahlentrippel angewendet. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A05-P-1107-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach einigen organisatorischen Äusserungen, leitet die Lehrperson auf algebraische Weise aus dem Satz des Pythagoras den Höhensatz des Euklid ab. Die Schülerinnen und Schüler erhalt...    mehr

    Nach einigen organisatorischen Äusserungen, leitet die Lehrperson auf algebraische Weise aus dem Satz des Pythagoras den Höhensatz des Euklid ab. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem ein rechtwinkliges Dreieck gezeichnet ist. Auf die durch Einzeichnen der Höhe des rechtwinkligen Dreiecks entstandenen Teildreiecke wird der Satz des Pythagoras angewendet. Die zwei entstandenen Gleichungen werden addiert, die Seite a2+b2 durch c2, anschließend c durch p+q ersetzt. Die entstandene Gleichung wird von den Schülerinnen und Schülern selbständig auf den Höhensatz des Euklid vereinfacht. Da dies einigen Schülerinnen und Schülern Mühe bereitet, erklärt die Lehrperson noch einmal die einzelnen Schritte, die bis zu der zu vereinfachenden Gleichung gemacht wurden. Die Lehrperson schreibt den Lösungsweg an die Wandtafel. Anschließend erzählt sie den Schülerinnen und Schülern, wie im Altertum mit dieser Formel rechteckige Flächen verglichen werden konnten. So lernen die Schülerinnen und Schüler die Unterscheidung zwischen arithmetischem und geometrischem Mittel mit Hilfe eines Zahlenbeispiels. Die Herleitung des Satzes von Euklid und das Beispiel zur Berechnung des geometrischen Mittels schreiben die Schülerinnen und Schüler auf das Blatt ab. Abschließend berechnen die Schülerinnen und Schüler das geometrische Mittel von zwanzig und fünf. Die Lektion enden mit einigen organisatorischen Angaben. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A06-P-1109-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der ersten Stunde der Pythagorasreihe gibt die Lehrperson das Thema bekannt. Danach liest ein Schüler von einer Folie des Hellraumprojektors Daten und weitere Ergänzungen z...    mehr

    Zu Beginn der ersten Stunde der Pythagorasreihe gibt die Lehrperson das Thema bekannt. Danach liest ein Schüler von einer Folie des Hellraumprojektors Daten und weitere Ergänzungen zum Leben des Pythagoras vor. Danach kommt die Klasse auf den Satz des Pythagoras zu sprechen. Die Schülerinnen und Schüler haben schon ein ziemlich fundiertes Wissen und tragen wichtige Punkte zum Satz des Pythagoras zusammen. Danach übertragen die Schülerinnen und Schüler die Formel und die Ausformulierung des Satzes von der Hellraumprojektor- Folie in ihr Formelheft. In der Folge wird besprochen wie der Kehrsatz des Satzes von Pythagoras heißt. Dieser wird an der Wandtafel notiert und die Lernenden übertragen den Kehrsatz direkt in ihr Formelheft. Darauf erzählt die Lehrperson, dass der Satz des Pythagoras schon im Altertum seine Anwendung fand und untermalt dies mit einer Folie einer ägyptischen Wandmalerei, welche die Schülerinnen und Schüler auch in ihrem Schulbuch haben. Darauf diskutiert die Klasse, wofür der Satz des Pythagoras damals wohl gebraucht wurde. Anschließend erzählt die Lehrperson vom Seiltrick und zeigt mit der Unterstützung zweier Schüler diesen mit einer Schnur vor. Damit veranschaulicht die Lehrperson die Konstruktion und Verwendung des rechten Winkels. Die Klasse zählt darauf die Einteilungen der Schnur, um die Seitenlängen zu bestimmen. Zur Veranschaulichung überträgt die Lehrperson das Dreieck auf die Wandtafel und die Klasse überprüft die Seileinteilung rechnerisch. Darauf schreibt die Lehrperson 3e+4e=5e an die Wandtafel und fordert die Lernenden auf, Angaben zu den drei Seiten eines Dreicks zu machen, wenn e als beliebige Zahl angenommen wird. Die Schülerinnen und Schüler nennen zwei Beispiele. Die Lehrperson konstruiert diese Dreiecke mit drei Baumetern und der Mithilfe eines Schülers. In der Folge verlangt die Lehrperson von Neuem die Nennung dreier Seiten eines rechtwinkligen Dreiecks, wobei das bekannte Zahlentrippel und dessen Verfielfältigung mit e diesmal nicht als Berechnungsgrundlage dienen soll. Die Schülerinnen und Schüler finden ein richtiges Beispiel. Die Lehrperson rundet die Sequenz ab, indem sie darauf verweist, dass diese Zahlen, die den Satz des Pythagoras erfüllen, pythagoräische Zahlentrippel genannt werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A07-P-1110-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden zu versorgen. Danach findet der eigentliche Unterrichtseinsti...    mehr

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden zu versorgen. Danach findet der eigentliche Unterrichtseinstieg statt. Die Lehrperson hält eine zusammengeknotete Schnur in der Hand und sagt der Klasse, dass sie sich diese Stunde mit einer solchen Schnur beschäftigen werden. In einem fragend-entwickelnden Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler, wozu eine zusammengeknüpfte Schnur, überhaupt gebraucht werden kann. Darauf verteilt die Lehrperson je eine Schnur pro Gruppentisch. Währenddem erzählt sie, wozu die Ägypter die Seile verwendeten. Die Klasse benennt danach das Spezielle, das diesen zusammengeknüpften Schnüren gemeinsam ist. Als nächstes verteilt die Lehrperson ein Arbeitsblatt. Anhand von fünf Aufträgen werden die Schülerinnen und Schüler zur Beschäftigung mit den Schnurabschnitten angeleitet. Sie arbeiten selbständig explorativ in dreier oder vierer Gruppen an ihren Gruppentischen. Die Lernenden bilden dabei zuerst ein rechtwinkliges Dreieck. Danach bestimmen sie die einzelnen Seitenlängen des Schnurdreiecks und bestimmen, wo sich der rechte Winkel im Dreieck befindet. Dies versuchen sie in Worten schriftlich zu erklären. Zum Schluss schreiben sie sich Fragen auf, die sich stellten. Die Ergebnisse werden gemeinsam ausgewertet. Dabei schreibt die Lehrperson alle drei Seitenlängen der verschiedenen Gruppenseile an die Wandtafel. Nachdem die Lage des rechten Winkels besprochen wurde, wird in einem fragend-entwickelnden Lehrgespräch die Beschriftung des rechten Winkels und die Benennung der längsten und der beiden kürzeren Seiten im rechtwinkligen Dreieck (Hypotenuse, Katheten) geklärt. Danach leitet die Lehrperson die Lernenden an, die neu gelernten Bezeichnungen der Seiten in ihr Heft zum Dreieck, das sie zuvor in der Gruppenarbeit in ihr Heft gezeichnet hatten, zu notieren. Die Notizen werden darauf von den Schülerinnen und Schülern in Einzelarbeit in ihr Heft übernommen. Nach der Stillarbeit bestimmt die Klasse im öffentlichen Unterrichtsgespräch die Hypotenusen und Katheten der Schnurdreiecke anhand der Längenmaße an der Wandtafel. Die Lehrperson notiert dies an die Wandtafel. Zum Schluss der Stunde schreibt die Lehrperson Fragen, die sich bei der Gruppenarbeit gestellt haben, ebenso an die Wandtafel. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation