Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: "SCHUELERARBEIT (PARTNERARBEIT)" (Filter: Sozialform)
Anzahl der Treffer: 174
Filtern nach:
  • Satzgruppe des Pythagoras (A14-P-1126-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach der Pause erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schülern die Umkehrungen der pythagoräischen Formel a2+b2=c2. Danach erarbeiten sie einen Beweis, indem sie...    mehr

    Nach der Pause erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schülern die Umkehrungen der pythagoräischen Formel a2+b2=c2. Danach erarbeiten sie einen Beweis, indem sie den bereits bekannten Kathetensatz zu Hilfe nehmen. Anschließend sollen die Lernenden den Beweis für sich nochmals durchführen, indem sie ihn zeichnerisch darstellen und in ihrem Heft die einzelnen Schritte schriftlich in einer Gleichung festhalten. Sie dürfen mit ihrem Banknachbarn zusammenarbeiten. Danach schauen die Lehrperson und die Lernenden den Beweis nochmals an, indem eine Schülerin an der Wandtafel den Beweis rechnerisch festhält. Im Anschluss an die Darbietung der Schülerin, erklärt die Lehrperson zusammen mit den Lernenden, wieso der Satz von Pythagoras eigentlich Hypotenusensatz heißen sollte. Er notiert die nun bereits bekannten Sätze (Kathetensatz, Höhensatz, Satz von Pythagoras) an die Wandtafel und fordert die Schülerinnen und Schüler auf, diese in ihr Heft zu übernehmen. Danach besprechen sie den Anfang einer neuen mehrschrittigen Berechnungsaufgabe im rechtwinkligen Dreieck. Es geht um die Berechnung der Seilbahnlänge. Eine Schülerin erklärt, wie man die Aufgabe lösen kann. Die Lernenden sollen selbständig die von der Schülerin genannten Schritte nachvollziehen. Wer fertig ist, soll eine weitere mehrschrittige Berechnungsaufgabe lösen (Berechnen und Vergleichen eines Strassenabschnittes). Anschließend zeigt eine Schülerin einen Lösungsweg an der Wandtafel vor. Zum Schluss der Doppellektion, bevor die Schülerinnen und Schüler die Schokolade unter sich aufteilen dürfen, gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A15-P-1205-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. De...    mehr

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. Der Bauer Albrecht soll dabei zwei seiner Felder gegen ein drittes tauschen, da die Bundesstrasse auf seinem Land vorbei führen soll. Die Klasse bespricht die Aufgabenstellung und die Lehrperson zeigt dazu die grafische Darstellung des Satzes von Pythagoras am Hellraumprojektor. In der Klasse wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs besprochen, ob dieser Feldertausch für den Bauer Albrecht lohnend sein kann. Ein Schüler schlägt vor, die Seiten der Quadrate zu messen und sie jeweils mal zu rechnen, um so die Fläche der einzelnen Quadrate zu erhalten. Die Lehrperson schreibt die Resultate an die Wandtafel. Die Lehrperson erzählt darauf der Klasse, dass der Bauer Albrecht zwei anderen Bauern von seinem Feldertausch berichtet. Die zwei anderen Bauern schreiben darauf dem Bürgermeister, denn sie wollen ebenso ihre Felder tauschen. Nun gibt die Lehrperson den Schülerinnen und Schülern den Auftrag, als Bürgermeister zu entscheiden, ob sie die Felder der zwei anderen Bauern eintauschen würden oder nicht. Die Schülerinnen und Schüler arbeiten zu zweit selbständig explorierend. Danach werden im öffentlichen Unterricht die Ergebnisse ausgetauscht. Die Klasse kommt darauf, dass die Gemeinde in einem Fall (stumpfwinkliges Dreieck - Verlängerung der Seite) profitieren würde und im anderen Fall (spitzwinkliges Dreieck - Verkürzung der Seite) ablehnen müssten, weil das nicht rentabel wäre. Die Lehrperson will darauf von der Klasse wissen, warum es Unterschiede gibt, obwohl die Grundflächen der zwei kleinen Quadrate identisch sind. In der Folge nennen die Schülerinnen und Schüler den Winkel, der ausschlaggebend ist für die Seite des großen Quadrates. Später wird der Satz des Pythagoras und der rechte Winkel von einem Schüler genannt. Darauf verteilt die Lehrperson den Schülerinnen und Schülern jeweils ein Blatt, an dessen Ecken die Schülerinnen und Schüler je ein Eselsohr machen sollen. So soll die Klasse überprüfen, ob die Behauptung stimmt, dass der Satz des Pythagoras nur in rechtwinkligen Dreiecken gilt. Die Schülerinnen und Schüler arbeiten alleine. Die Berechnung der Quadratflächen von den Seiten eines Dreiecks ist den Schülerinnen und Schüler bekannt von dieser Lektion. Die Klasse arbeitet an diesem Auftrag, bis es in die Pause klingelt. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A16-P-1208-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Lektion beleuchten die Schülerinnen und Schüler mit Hilfe der Lehrperson, was für theoretische Inhalte in der letzten Lektion erarbeitet wurden, losgelöst von der ...    mehr

    Zu Beginn dieser Lektion beleuchten die Schülerinnen und Schüler mit Hilfe der Lehrperson, was für theoretische Inhalte in der letzten Lektion erarbeitet wurden, losgelöst von der Hinführungsaufgabe. Dabei erhalten zwei Schüler den Auftrag, bis zur nächsten Lektion einiges über das Leben des Pythagoras herauszufinden. Dann teilt die Lehrperson eine Liste von richtigen und falschen Aussagen zum Satz des Pythagoras aus, die von den Schülerinnen und Schülern selbständig ausgewertet und anschließend in der Klasse besprochen wird. Danach zeichnen die Schülerinnen und Schüler ein vorgegebenes rechtwinkliges Dreieck in ihr Heft und überprüfen den Zusammenhang der Seitenquadrate noch einmal. Als Lösung formuliert ein Schüler den Satz des Pythagoras: a2+b2=c2. Zwei weitere gegebene Dreiecke werden konstruiert, vermessen und berechnet. Danach sind die Schülerinnen und Schüler aufgefordert selbständig den Satz des Pythagoras oder seine Verwendung allgemein zu formulieren. Dabei schreibt ein Schüler auf Wunsch der Lehrperson seinen Satz an die Wandtafel: "In einem rechtwinkligen Dreieck kann aus den beiden kurzen Seiten die dritte berechnet werden." Dies überprüfen die Schülerinnen und Schüler anschließend selbständig an einem gegebenen rechtwinkligen Dreieck. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A16-P-1208-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion bestimmt die Klasse unter der Leitung der Lehrperson, ob es sich bei vorgegebenen Seitenlängen eines Dreiecks um ein rechtwinkliges handelt und berechnen gleich...    mehr

    Zu Beginn der Lektion bestimmt die Klasse unter der Leitung der Lehrperson, ob es sich bei vorgegebenen Seitenlängen eines Dreiecks um ein rechtwinkliges handelt und berechnen gleich anschließend die Länge einer Hypotenuse bei gegebenen Katheten. Danach halten die Schüler, die in der letzten Lektion eben diesen Auftrag gefasst haben, ihren Vortrag über das Leben und Wirken des Pythagoras. Anschließend wird der Satz des Pythagoras bewiesen: Jeder Schüler und jede Schülerin erhält einen Satz Puzzleteile (Dreiecke und Vierecke) die zu einem großen Quadrat gelegt werden sollen. Als Hilfe teilt die Lehrperson, nachdem die Schülerinnen und Schüler etwas geknobelt und teilweise auch auf richtige Lösungen gekommen sind, ein Blatt mit einer Pythagorasfigur aus, deren Quadrat der Hypotenuse genau so groß ist, wie das zu legende Quadrat. Nun sollen die Schülerinnen und Schüler zu zweit arbeiten und mit dem einen Teilchensatz das Hypothenusenquadrat und mit dem andern die Kathetenqadrate belegen. Ihre Lösung zeichnen sie auf dem Blatt ein. Wie die meisten Gruppen so weit sind, zeigt die Lehrperson einige mögliche Lösungen - denn es gibt ja mehrere - der Schülerinnen und Schüler. Danach berechnen die Schülerinnen und Schüler, ob sie eine Sperrholzplatte von vier mal zweieinhalb Meter durch die Tür in das Schulzimmer hinein tragen könnten. Mit der Erkenntnis, dass dies nicht möglich ist und dass die Platte höchstens 2,28m breit sein dürfte, ist die Lektion zu Ende. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A17-P-1218-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass sich die Klasse heute noch einmal mit dem Kathetensatz und dem Höhensatz auseinandersetzen und der Satz des Pythagoras Teil ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass sich die Klasse heute noch einmal mit dem Kathetensatz und dem Höhensatz auseinandersetzen und der Satz des Pythagoras Teil der nächsten (nicht gefilmten) Lektion sein wird. Die Lehrperson zeichnet an der Wandtafel ein spitzwinkliges Dreieck samt Höhe und Bezeichnungen und fordert die Schülerinnen und Schüler auf, für dieses Dreieck den Kathetensatz zu formulieren. Promt fallen einige Schülerinnen und Schüler auf die Falle herein. Schließlich wenden einige Schülerinnen und Schüler ein, dass die beiden Sätze nur im rechtwinkligen Dreieck gelten. Dann repetieren sie die ausformulierten Formen der beiden Sätze. Danach werden die Hausaufgaben kontrolliert. Der weitere Verlauf der Lektion steht unter dem Titel "Anwendung des Kathetensatzes und Höhensatzes", welchen die Schülerinnen und Schüler in ihr Heft schreiben. Als erstes gibt die Lehrperson eine theoretische Anleitung für die graphische Umwandlung eines Quadrates in ein flächengleiches Rechteck, von dem eine Seite gegeben ist, mit Hilfe des Kathetensatzes. Anschließend an diese Einleitung wandeln die Schülerinnen und Schüler selbständig zwei gegebene Quadrate in flächengleiche Rechtecke um. Analog zu dieser ersten Anwendungssequenz zeig die Lehrperson vor, wie mit Hilfe des Höhensatzes ein beliebiges Rechteck in ein flächengleiches Quadrat umgewandelt werden kann. Anschließend konstruieren die Schülerinnen und Schüler auch diese Umwandlung mit einem Zahlenbeispiel. Als Hausaufgabe sollen die Schülerinnen und Schüler diese beiden Konstruktionsarten mit Hilfe des Buches repetieren. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A18-P-1222-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach einigen organisatorischen Informationen ruft sich die Klasse ein Verfahren ins Gedächtnis, mit dem sie gelernt hat die Wurzel aus zwei zu konstruieren. Anschließend sollen die Sc...    mehr

    Nach einigen organisatorischen Informationen ruft sich die Klasse ein Verfahren ins Gedächtnis, mit dem sie gelernt hat die Wurzel aus zwei zu konstruieren. Anschließend sollen die Schülerinnen und Schüler zu zweit versuchen die Wurzel aus drei zu konstruieren. Nach fünf Minuten präsentieren die Schülerinnen und Schüler ihre Lösungsvorschläge an der Wandtafel. Wie erwartet, kam niemand auf einen befriedigenden Lösungsweg. Um ein Verfahren zu erarbeiten, wie also die Wurzel aus einer beliebigen Zahl konstruiert werden kann, verwandelt die Lehrperson an der Wandtafel als erstes ein Quadrat in ein Rechteck, von dem eine Seite gegeben ist. Dabei bezieht sie die Schülerinnen und Schüler in ein Lehr-Lerngespräch ein. Die Lehrperson unterbricht die Konstruktion, nachdem sie das Quadrat in ein Parallelogramm umgewandelt hat, damit die Schülerinnen und Schüler die Konstruktion so weit in ihr Theorieheft übernehmen können. Anschließend wird die Konstruktion an der Wandtafel zu Ende geführt. Als letztes werden die Flächen des Ausgangsquadrates und des entstandenen Rechtecks berechnet und verglichen. Nun will die Lehrperson auf die gleiche Weise ein Rechteck in ein Quadrat verwandeln, unterbricht den Unterricht aber für eine kleine Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A18-P-1222-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson repetiert kurz, was in der letzten Stunde gemacht wurde. Nun sollen sich die Schülerinnen und Schüler wieder in Zweiergruppen überlegen, wie nun umgekehrt ein Rechte...    mehr

    Die Lehrperson repetiert kurz, was in der letzten Stunde gemacht wurde. Nun sollen sich die Schülerinnen und Schüler wieder in Zweiergruppen überlegen, wie nun umgekehrt ein Rechteck in ein Quadrat umgeformt werden kann. Die Schülerinnen und Schüler stellen mit Hilfe der in der letzten Lektion gemachten Konstruktion fest, dass die Seite des gesuchten Quadrates die Kathete eines rechtwinkligen Dreiecks ist, dass über der längeren Seite des Rechtecks errichtet wurde. An der Wandtafel präsentieren sie nun ihre Ideen, wie der Scheitelpunkt des gesuchten rechtwinkligen Dreiecks gefunden werden kann. Schließlich verweist die Lehrperson auf die Konstruktion der letzten Lektion, um den Schülerinnen und Schülern die richtige Methode zu demonstrieren. Wie nun die Lösung gefunden wurde, werden die gemachten Arbeitsschritte in der Klasse wiederholt und die Schülerinnen und Schüler übernehmen auch diese Umwandlung in ihr Theorieheft. Nun kehrt die Lehrperson wieder zum Anfangsproblem - der Konstruktion der Wurzel aus drei - zurück. Mit der gelernten Methode ist diese Aufgabe von der Klasse nun zu lösen. Als Hausaufgabe sollen die Schülerinnen und Schüler die Wurzel aus sechs oder sieben konstruieren. Zuletzt werden die einzelnen Teile im rechtwinkligen Dreieck einheitlich benannt. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A18-P-1222-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion werden die Hausaufgaben besprochen und die in der letzten Lektion gelernten Lösungswege repetiert. Dann macht die Klasse einen Hefteintrag mit dem Titel "der ...    mehr

    Zu Beginn der Lektion werden die Hausaufgaben besprochen und die in der letzten Lektion gelernten Lösungswege repetiert. Dann macht die Klasse einen Hefteintrag mit dem Titel "der Kathetensatz des Euklid". In einer Skizze wird der Satz dargestellt, darunter schreiben die Schülerinnen und Schüler, wie im vorausgehenden Unterrichtsgespräch herausgefunden: b2=cq. Schließlich wird der Kathetensatz in Worten formuliert und auch als Formel für die Kathete a aufgeschrieben. Dann überprüfen die Schülerinnen und Schüler zu zweit an den individuellen Skizzen die Aussage des Satzes. Nun stellt die Lehrperson den Satz des Pythagoras als Behauptung auf. Die Klasse überprüft auch diese Aussage an den individuellen Skizzen. Da dies - wie die Lehrperson sagt - aber noch nicht ausreicht, um seine Richtigkeit zu bestätigen, beweist sie die Aussage dadurch, indem sie veranschaulicht, dass die Kombination der beiden Kathetensätze den Satz des Pythagoras ergibt. Schließlich formuliert die Klasse den Satz des Pythagoras in Worten. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A19-P-1223-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dies...    mehr

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dieser Darstellung teilt sie auch an die Schülerinnen und Schüler aus. Ihre Aufgabe ist es, zu zweit den Lösungsweg zur Berechnung der Länge der für die Herstellung eines solchen Daches benötigten Dachsparren zu finden, wenn das Dreieck, das die beiden Dachschrägen und die Parallele zum Boden bilden, im Giebel rechtwinklig ist. Auch die Länge eines solchen Teildaches und der Punkt, wo dieses von der Höhe durch den Giebel geteilt wird, sind den Schülerinnen und Schülern bekannt. Nach etwa zehn Minuten wird im Plenum besprochen, auf was für Lösungsansätze die Schülerinnen und Schüler gekommen sind. Eine Schülerin schlägt vor, das Dreieck zu konstruieren und die Länge der Dachsparren durch Messen zu bestimmen. Auch fällt das Stichwort "Strahlensätze", woran die Lehrperson das weiterführende Lehr-Lerngespräch anknüpft. An der Wandtafel hängt die Lehrperson ein rechtwinkliges Dreieck aus braunem Papier auf und lässt einen Schüler die zwei Teildreiecke aus blauem Papier, die durch das Einzeichnen der Höhe entstünden, exakt darüber hängen. Dieser Schüler ist es auch, der behauptet, alle diese Papierdreiecke seien zueinander ähnlich. Dies wird durch die Lehrperson bestätigt und für die anderen Schülerinnen und Schüler durchsichtig gemacht. Nun hängt die Lehrperson ein weiteres zum braunen Dreieck identisches Papierdreieck an die Wandtafel. Ein Schüler hängt eines der blauen Dreiecke so auf das zweite braune, dass die Klasse sieht, wie der zweite Strahlensatz auf diese beiden Dreiecke angewendet werden kann. Die Lehrperson schreibt alle bekannten Grössen aus der Dachsparrenaufgabe in Zahlen, die unbekannten in Buchstaben auf die beiden Dreiecke. Mit diesen Angaben stellt die Klasse die Verhältnisgleichung auf und rechnet so die eine Kathete des braunen Dreiecks aus. Anschließend schreiben, zeichnen und kleben die Schülerinnen und Schüler den ganzen Lösungsweg von der Wandtafel ab. Dabei überlegen sie sich bereits den Lösungsweg zur Berechnung des anderen Dachsparrens. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A19-P-1223-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Stunde legt die Lehrperson eine Folie auf, auf der einige Behauptungen zu den Kathetensätzen aufgeschrieben sind. Die Schülerinnen und Schüler bewerten nun in der Klass...    mehr

    Zu Beginn der Stunde legt die Lehrperson eine Folie auf, auf der einige Behauptungen zu den Kathetensätzen aufgeschrieben sind. Die Schülerinnen und Schüler bewerten nun in der Klasse, ob die Aussagen richtig oder falsch sind. Anschließend legt die Lehrperson eine sauber konstruierte Pythagorasfigur auf den Hellraumprojektor, auf der die Kathetensätze graphisch erkennbar sind. An Hand dieser Darstellung werden die Formeln der Kathetensätze ins Gedächtnis gerufen. Dann formulieren die Schülerinnen und Schüler im Plenum die Kathetensätze für unüblich beschriftete rechtwinklige Dreiecke. Die Lehrperson behauptet, dass im rechtwinkligen Dreieck gelte, dass die Summe der Flächen der Kathetenquadrate gleich der Fläche des Hypotenusenquadrates ist. Dies sollen die Schülerinnen und Schüler an Hand ihres Vorwissens nun selbständig beweisen. Nachdem die Schülerinnen und Schüler etwa zehn Minuten Zeit hatten, zu zweit diesen Beweis zu führen, geben sie ihre Erkenntnisse in der Klasse bekannt. Einige Schülerinnen und Schüler haben Zahlenbeispiele berechnet, eine Schülerin zeigt an der Wandtafel eine allgemeine Umformug der Kathetensätze in den Satz des Pythagoras. Da die Ausführungen bei der Klasse und der Lehrperson auf Unverständnis stoßen, führt ein Schüler die von der Schülerin angefangene Umformung zu Ende. Aus dem Buch liest eine Schülerin etwas über die Person Pythagoras vor. Anschließend wird der Satz des Pythagoras in der Klasse in Worten formuliert. Vor dem Ende der Lektion wird die Hypotenuse eines rechtwinkligen Dreiecks, dessen Katheten bekannt sind, in der Klasse berechnet. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation