Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: LOESUNGSSTRATEGIE (Filter: Schlagwörter)
Anzahl der Treffer: 139
Filtern nach:
  • Satzgruppe des Pythagoras (A02-P-1103-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass heute der Satz, der am Vortag eingeführt wurde, bewiesen werden soll. In einem Lehr-Lerngespräch führt die Lehrperson den alge...    mehr

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass heute der Satz, der am Vortag eingeführt wurde, bewiesen werden soll. In einem Lehr-Lerngespräch führt die Lehrperson den algebraischen Beweis. Diesen übernehmen die Schülerinnen und Schüler von der Wandtafel in ihr Theorieheft. Wie die Schülerinnen und Schüler mit dem Abschreiben fertig sind, kommt die Lehrperson auf pythagoräische Zahlentrippel zu sprechen. Sie nennt die Zahlentrippel drei, vier, fünf und sechs, acht, zehn als Beispiel. Die Schülerinnen und Schüler nennen weitere Beispiele und suchen anschließend mit Hilfe des Taschenrechners selbständig weitere Beispiele. Nach einigen Minuten sammelt die Lehrperson die weiteren Beispiele an der Wandtafel. Anschließend löst die Klasse Übungsaufgaben. Als erstes wird im Plenum gezeigt, wie vorgegangen werden muss, wenn eine Quadratfläche, die den Summen von zwei gegebenen Quadratflächen entsprechen soll, gesucht ist. Die Schülerinnen und Schüler lösen anschließend zwei ähnliche Aufgaben selbständig. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A02-P-1103-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einer kurzen organisatorischen Angabe. Danach wird der Satz des Pythagoras repetiert und zur Belustigung mit dem Satz auf dem Rittersportplakat verglichen. ...    mehr

    Die Lektion beginnt mit einer kurzen organisatorischen Angabe. Danach wird der Satz des Pythagoras repetiert und zur Belustigung mit dem Satz auf dem Rittersportplakat verglichen. Anschließend entwickelt die Lehrperson zusammen mit den Schülerinnen und Schüler die Umkehrungen des Satzes. Dazu wird im Klassenverband eine einschrittige Übungsaufgabe gelöst. Weitere acht Aufgaben dieses Typs lösen die Schülerinnen und Schüler selbständig. Nachdem diese Aufgaben und die verschiedenen, taschenrechnerbedingten Eingabearten in der Klasse besprochen wurden, berechnen die Schülerinnen und Schüler weitere sieben Dreiecksseiten. Abschließend werden die Ergebnisse kontrolliert. Dann werden im Plenum drei komplexe, teilweise mehrschrittige Textaufgaben, die als Hausaufgabe fertig zu machen sind, detailiert vorbesprochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A03-P-1104-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach der Pause wird der Ergänzungsbeweis zu Ende geführt. Danach macht die Lehrperson einen kurzen geschichtlichen Rückblick zur Person des Pythagoras und lässt danach die Schülerinnen...    mehr

    Nach der Pause wird der Ergänzungsbeweis zu Ende geführt. Danach macht die Lehrperson einen kurzen geschichtlichen Rückblick zur Person des Pythagoras und lässt danach die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras vom Buch ins Theorieheft übernehmen. Nun erarbeitet die Lehrperson mit der Klasse die Prozedur einer Aufgabe, bei der die richtige Bestimmung von Hypotenuse und Katheten in einer Planskizze eine relevante Bedeutung hat. Anschließend lösen die Schülerinnen und Schüler eine Übungsaufgabe zur Seitenberechnung in rechtwinkligen Dreiecken. Dabei schreibt die Lehrperson den Lösungsweg an die Wandtafel. Für die zwei folgenden Aufgaben wird von jeweils einer Schülerin der Lösungsweg an die Wandtafel geschrieben, währenddem die anderen selbständig an ihren Plätzen arbeiten. Die Schülerinnen und Schüler haben genügend Zeit ihre Ergebnisse mit denjenigen an der Wandtafel zu vergleichen. Lösungswege werden nicht besprochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A03-P-1104-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der dritten Lektion formulieren mehrere Schülerinnen und Schüler den Satz des Pythagoras auswändig, gemäss dem Theorieeintrag vom Vortag, im Sinne einer Aktivierung des Vorwi...    mehr

    Zu Beginn der dritten Lektion formulieren mehrere Schülerinnen und Schüler den Satz des Pythagoras auswändig, gemäss dem Theorieeintrag vom Vortag, im Sinne einer Aktivierung des Vorwissens. Danach werden die Hausaufgaben kontrolliert. Bei einer Aufgabe werden die Lösungsschritte aufgezeigt. Im Weiteren wird gemeinsam eine Aufgabe zur Berechnung einer Kathetenlänge gelöst, die den Aufgaben des Vortages ähnlich ist. Darauf kommt die Lehrperson kurz auf die pythagoräischen Zahlentrippel zu sprechen. Anschließend lösen die Schülerinnen und Schüler selbständig eine weitere Aufgabe zur Seitenberechnung in rechtwinkligen Dreiecken. Eine Schülerin schreibt den Lösungsweg an die Wandtafel. Die Aufgabe wird gemeinsam besprochen. Danach lösen die Lernenden fünf weitere Aufgaben, die der vorgezeigten zum größten Teil ähnlich, zum Teil auch anspruchsvoller sind. Bei den anspruchsvolleren Aufgaben geht es zusätzlich um die richtige Zuteilung des rechten Winkels im Dreieck und um die Berechnung der Basishöhe in einem gleichschenkligen Dreieck. Die Ergebnisse werden gemeinsam kontrolliert. Darauf erteilt die Lehrperson den Arbeitsauftrag für vier verschiedene Aufgaben, wobei die Lehrperson bei einer Aufgabe auf zentrale Lösungsschritte verweist. Die Aufgaben werden von den Lernenden in einer der folgenden, nicht-gefilmten Lektionen selbständig gelöst. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue...    mehr

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue Quadrate (entsprechen a2, b2) und ein grünes (entspricht c2) Quadrat. Der Auftrag dazu lautet: Vergleiche die grünen und die zwei blauen Flächen (=Grundlage für Ergänzungsbeweis). Das wird zuerst gemeinsam in der Klasse besprochen. Dabei äußern die Schülerinnen und Schüler verschiedene Vermutungen, welche Figur größer ist. In der Folge leitet die Lehrperson die Schülerinnen und Schüler an, diese Vermutungen zu überprüfen und zu begründen oder zu beweisen. Daraufhin schieben die Schülerinnen und Schüler ihre Tische zu Gruppentischen zusammen (jeweils vier bis fünf Schülerinnen und Schüler). Danach verteilt die Lehrperson Arbeitsblätter, auf denen dieselben Quadrate abgebildet sind. Die Schülerinnen und Schüler arbeiten nun in ihren Gruppen selbständig entdeckend, wobei sie die Quadrate ausschneiden/ zerschneiden oder indem sie berechnen können. Die Lehrperson unterbricht diese Sequenz und nun sammelt die Klasse die Gruppenergebnisse. Diese werden jeweils von einer Gruppe vorgestellt und die Lehrperson schreibt die Ergebnisse an die Wandtafel. Die Klasse einigt sich mehr oder weniger darauf, dass die Flächen mit Einbezug von Messungenauigkeiten gleich groß sind. Danach stellt die Lehrperson den Beginn eines mathematischen Lösungsweges einer der fünf Gruppen vor. Dieser Lösungsweg entspricht dem Ergänzungsbeweis. Die Lehrperson leitet die Gruppen nun dazu an, die zwei Flächen c2+ vier Dreiecke und a2+ b2+ vier Dreiecke zu berechnen und zu vergleichen. In der Klasse wird aufgrund von Schwierigkeiten einzelner Schülerinnen und Schüler das Vorgehen schrittweise besprochen und von Schülerinnen und Schülern erklärt. Die Lösungen berechnen die Schülerinnen und Schüler in Vierer- oder Fünfergruppen. Die Gruppenarbeit wird durch eine Pause unterbrochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A05-P-1107-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identisch...    mehr

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identische Rechtecke mit den Seiten a und b zu einem Quadrat zusammengefügt wurden, so dass in der Mitte ein kleines Quadrat mit der Seitenlänge (a-b) entsteht. Als erstes schreiben die Schülerinnen und Schüler alle Teilseiten des großen Quadrates mit a und b an. Dann wird in der Klasse die Fläche des Quadrates durch a und b ausgedrückt und an der Wandtafel aufgeschrieben. Anschließend zeichnen die Schülerinnen und Schüler die Diagonalen der Rechtecke, die sie c nennen, ein, so dass diese ein neues Quadrat bilden. In der Klasse wir vor allem durch die Lehrperson gezeigt, dass es sich dabei auch tatsächlich um ein Quadrat handelt. Von dieser neuen Figur (ein Quadrat, bestehend aus vier rechtwinkligen Dreiecken und einem kleineren Quadrat) wird die gesamte Fläche durch die Teilflächen ausgedrückt und mit der ersten Gleichung gleichgesetzt. An der Wandtafel wird die Gleichung nun auf den Satz des Pythagoras vereinfacht. Die ganze Herleitung wird von den Schülerinnen und Schülern auf das Blatt abgeschrieben. Anschließend wendet sich die Klasse der Verwendung des Satzes von Pythagoras zu. Mit Hilfe der Lehrperson wird die Formel zur Berechnung der Quadratdiagonalen hergeleitet. Danach werden ganzzahlige pythagoräische Zahlentrippel gesucht und benannt. Die griechischen Bezeichnungen für die Seiten im rechtwinkligen Dreieck werden repetiert und auf die pythagoräischen Zahlentrippel angewendet. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A05-P-1107-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion treffen die Schülerinnen und Schüler einige Vorbereitungen, mit deren Hilfe sie anschließend die Höhe im gleichseitigen Dreieck berechnen. Zuerst berechnen sie...    mehr

    Zu Beginn der Lektion treffen die Schülerinnen und Schüler einige Vorbereitungen, mit deren Hilfe sie anschließend die Höhe im gleichseitigen Dreieck berechnen. Zuerst berechnen sie selbständig ein Zahlenbeispiel. Ein Schüler präsentiert den Lösungsweg an der Wandtafel. Daraus wird in der Klasse die allgemein gültige Formel abgeleitet. In der Klasse wird anschliessend ein weiteres Zahlenbeispiel berechnet sowie aus der Formel abgelesen, ob sich das Verhältnis zwischen Seite und Höhe linear verhält. Am Schluss der Lektion werden die Hausaufgaben korrigiert und besprochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A06-P-1109-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    In einem entwickelnden Lehr- und Lerngepräch wird zu Beginn der zweiten Stunde erörtert, wozu der Satz des Pythagoras heute noch verwendet wird. Danach erarbeitet die Lehrperson mit ...    mehr

    In einem entwickelnden Lehr- und Lerngepräch wird zu Beginn der zweiten Stunde erörtert, wozu der Satz des Pythagoras heute noch verwendet wird. Danach erarbeitet die Lehrperson mit der Klasse die Prozedur einer Aufgabe, bei der eine Kathete berechnet werden muss. Darauf gibt die Lehrperson den Auftrag für eine weitere Berechnung, die der vorhergehenden ähnlich ist. Die Seiten sind jedoch mit anderen Variablen bezeichnet. Zur Überprüfung dieser Rechnung schreibt ein Schüler den Lösungsweg und das Ergebnis an die Wandtafel, der Lehrer ergänzt die Wandtafelanschrift und empfiehlt den Schülerinnen und Schülern danach, immer zuerst den Satz des Pythagoras als Formel mit den entsprechenden Variablen aufzuschreiben, um so Fehler zu vermeiden. Darauf teilt die Lehrperson ein Blatt aus. Auf diesem steht die nächste Aufgabe. Die Lösungsprozedur der Aufgabe wird im Klassenverband entwickelt. Es geht dabei um die Anwendung des Pythagoras bei der Berechnung einer neuen Niederschlagswassergebühr in Darmstadt (wobei die Berechnung der Dachfläche wichtig ist ). Nach dem Abschluss dieser Aufgabe verteilt die Lehrperson ein neues Aufgabenblatt, auf dem eine griechische Briefmarke abgebildet ist. Sie stellt den Zerlegungsbeweis dar mit dem bekannten Zahlentrippel (3,4,5). Die Klasse überprüft rechnerisch, ob die Darstellung stimmt. In der Folge erteilt die Lehrperson den Auftrag fünf Teilaufgaben zu lösen. Die Schülerinnen und Schüler lösen diese in Einzelarbeit. Die Aufgaben sind dem bereits Bekannten ähnlich. Es geht dabei um die richtige Darstellung einer Planskizze anhand der pythagoräischen Formel. Die Ergebnisse werden gemeinsam öffentlich korrigiert. In der Folge erteilt die Lehrperson einen neuen Auftrag. Die Lernenden bearbeiten eine Aufgabe mit fünf Teilaufgaben, bei denen je die Länge einer Seite des Dreiecks berechnet wird. Diese Aufgaben sind den bereits gelösten ähnlich und bauen auf Bekanntem auf. Gemeinsam werden die Ergebnisse korrigiert, dazwischen gibt die Lehrperson Hausaufgaben auf. Zum Abschluss der Stunde gibt die Lehrperson noch kurz bekannt, was die Klassse in der nächsten Stunde behandeln wird. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A07-P-1110-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zuerst werden die Hausaufgaben von der Lehrperson angeschaut und gemeinsam korrigiert. Bei zwei Aufgaben werden die Lösungswege besprochen. Zwischen der Korrektur der einzelnen Auf...    mehr

    Zuerst werden die Hausaufgaben von der Lehrperson angeschaut und gemeinsam korrigiert. Bei zwei Aufgaben werden die Lösungswege besprochen. Zwischen der Korrektur der einzelnen Aufgaben nimmt die Lehrperson Bezug auf bekannte Inhalte. Dabei erklären die Schülerinnen und Schüler den Bezug von Katheten und Hypotenuse zum rechten Winkel und definieren den Kehrsatz. Danach erzählt die Lehrperson kurz etwas zur Person des Pythagoras und kommt dabei auf die grafische Darstellung des Satzes zu sprechen. Zwei Schüler heften drei Quadrate und ein vorgefertigtes Dreieck so an die Pinwand, dass sie die pythagoräische Formel grafisch darstellen. Während eines entwickelnden Lehr- und Lerngespräch bespricht die Klasse mit der Lehrperson den Zusammenhang zwischen der Formel und der graphischen Darstellung des Satzes von Pythagoras. Die Behauptung des Pythagoras sei, so fährt die Lehrperson weiter, dass ein Dreieck dann rechtwinklig ist, wenn die beiden Flächenquadrate über den Katheten zusammen so groß sind wie das Flächenquadrat über der Hypotenuse. Mit der Aussage, dass in der Mathematik eine Aussage auch immer bewiesen sein muss, leitet sie zu einem Beweis über. Als erstes kommt die Klasse anhand eines entwickelnden Lehr- und Lerngespräch auf die Beweismöglichkeit der Zerlegung zu sprechen. In der Folge werden die Schülerinnen und Schüler von der Lehrperson instruiert, anhand eines Arbeitsblattes einen Ergänzungsbeweis zu erarbeiten. Die Schülerinnen und Schüler arbeiten in Gruppen an ihren Gruppentischen selbständig explorierend. Drei Schülerinnen und Schüler, die mit ihrer Arbeit bereits fertig sind, heften nach einiger Zeit mit Unterstützung der Lehrperson die zwei Figuren des Ergänzungsbeweises zur Veranschaulichung von diesem an die Pinwand. Währenddem arbeiten die anderen Schülerinnen und Schüler an ihren Plätzen weiter. Während der Besprechung der Lösungen klingelt es in die Pause. Die Lehrperson verschiebt die weitere Auswertung auf die nächste Stunde und verteilt zum Schluss die Hausaufgaben auf die nächste Stunde. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A09-P-1114-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der L...    mehr

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson den Satz des Pythagoras als Merksatz und schreiben in ihr Theorieheft. Ein Schüler übersetzt den Merksatz in die Formel a2+ b2= c2. Um zu überprüfen, ob die Formel denn nicht auch für andere Dreiecke gelten könnte, zeichnet jeder Schüler und jede Schülerin ein beliebiges Dreieck und probiert den Satz daran aus. Die Lehrperson stellt stellvertretend für die Schülerinnen und Schüler fest, dass der Satz also nur im rechtwinkligen Dreieck gültig ist. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson die Umkehrformeln zum Satz des Pythagoras, für die sie in zwei einschrittigen Anwendungsbeispielen Verwendung finden. Von zwei gegebenen rechtwinkligen Dreiecken ist je eine Seite gesucht. Bei beiden Aufgaben wird zuerst das Vorgehen in der Klasse besprochen, dann rechnen die Schülerinnen und Schüler selbständig die fehlende Seite aus und schließlich wird die Aufgabe und deren Lösungsweg in der Klasse verglichen. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation