DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: "PYTHAGORAEISCHER LEHRSATZ" (Filter: Schlagwörter)
VERGLEICH (Filter: Schlagwörter)

Anzahl der Treffer: 5
Filtern nach:
     1     
  • Satzgruppe des Pythagoras (A11-P-1118-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion wird das Vorwissen aktiviert: Der Satz des Pythagoras wird von den Schülerinnen und Schülern nochmals benannt und erklärt. Anschließend zeigt die Lehrperson den ...    mehr

    Zu Beginn der Lektion wird das Vorwissen aktiviert: Der Satz des Pythagoras wird von den Schülerinnen und Schülern nochmals benannt und erklärt. Anschließend zeigt die Lehrperson den Inhalt der letzten zwei Lektionen nochmals auf. Anschließend leitet die Lehrperson die Schülerinnen und Schüler an, ein Arbeitsblatt zu bearbeiten. Das machen die Lernenden in Partnerarbeit. Mit dem Arbeitsblatt werden die Lernenden zum Flächenvergleich verschiedener Vierecke und Dreiecke des Ergänzungsbeweises angeleitet. Die Beweisidee soll von den Schülerinnen und Schülern selber mittels kleinschrittig aufgegebenen Aufgabenschritte gefunden werden. Nach dieser Partnerarbeit werden die Lösungen gemeinsam besprochen. Dabei geht die Lehrperson teilweise auf verschiedene Lösungswege der Schülerinnen und Schüler ein und schreibt wesentliche Schritte zur Lösung der drei Aufgaben an die Wandtafel. Dabei schreiben die Schülerinnen und Schüler allfällige Ergänzungen zu ihren Notizen ins Heft. Danach diktiert die Lehrperson den Lernenden eine kurze, prägnante Erklärung des Zerlegungsbeweises, welche die Schülerinnen und Schüler ebenso in ihr Heft schreiben. Am Hellraumprojektor stellt darauf die Lehrerin einen weiteren Lösungsweg einer Schülerin vor. Danach wird der algebraische Weg des Ergänzungsbeweises an der Wandtafel gemeinsam erarbeitet. Die Schülerinnen und Schüler schreiben das eben Erarbeitete in ihr Heft ab. Zum Schluss der Lektion werden organisatorische Dinge geregelt, bei denen es um Hausaufgaben und die nächste Mathematiklektion geht. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A12-P-1119-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die ...    mehr

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die Klasse die Seiten des Rechtecks und dessen Fläche sowie die Fläche der zwei Dreiecke. Nun leitet die Lehrperson die Schülerinnen und Schüler an, beim nächsten Auftrag genau so vorzugehen. Einmal sollen die Schülerinnen und Schüler von der Gesamtfläche der Figur und einmal von den Teilflächen der Figur ausgehen, um den Flächeninhalt eines Quadrates zu berechnen. Das Quadrat soll von vier kongruenten Dreiecken gebildet werden, wobei das Quadrat nicht notwendig vollständig ausgefüllt sein muss. Nach der zweifachen Berechnung des Flächeninhaltes, sollen die Schülerinnen und Schüler ihre Beobachtungen notieren. In er darauf folgenden Schülerarbeitsphase arbeiten die Schülerinnen und Schüler selbständig entdeckend. Danach werden in der Klasse die Resultate besprochen. Zuerst stellt eine Schülergruppe ihren Lösungsweg am Hellraumprojektor und an der Wandtafel vor, die Klasse und die Lehrperson ergänzen ihren Lösungsweg. Ein zweiter Lösungsweg wird von einer Schülerin am Hellraumprojektor mit Figuren gelegt. Den Lösungsweg schreibt sie an die Wandtafel. Der Lösungsweg wird durch Mitschülerinnen und Mitschüler unter Führung der Lehrperson ergänzt. Auch diese Gleichung wird aufgelöst. Bei beiden Flächengleichsetzungen ergibt sich die Lösung a2 + b2 = c2 . Nun stellt die Lehrperson die Frage, ob diese Formel für alle Dreiecke gelte. Die Lehrperson zeigt nun der Klasse mehrmals die Umwandlung der grafischen Darstellung des algebraischen Beweises zur Darstellung des Satzes von Pythagoras. Dadurch will die Lehrperson den Schülerinnen und Schülern zeigen, dass der Satz nur in rechtwinkligen Dreiecken gilt. Dies formulieren die Schülerinnen und Schüler auch gegen Ende dieser Phase. Darauf zeigt die Lehrperson an der Wandtafel, mit Unterstützung der Klasse, wie man ein rechtwinkliges Dreieck konstruiert. Zum Schluss der Stunde instruiert die Lehrperson die Klasse, wie die Seiten beschriftet werden, und dass die zwei kürzeren Seiten eines rechtwinkligen Dreiecks Katheten und die längere Seite Hypotenuse genannt wird. Danach ist Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A20-P-1225-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbr...    mehr

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbrink einen Landtausch an. Zwei kleine quadratische Felder sollen in ein angrenzendes großes quadratisches Feld umgetauscht werden. Der Bauer weiß nicht recht, ob er dem Handel zustimmen soll, doch seine Nichte berechnet die Flächen der Felder und rät ihrem Onkel auf den Tausch einzusteigen. Von dem Handel erzählt Bauer Piepenbrink am Stammtisch. Seine zwei Kollegen, Bauer Plattfuß und Bauer Großmaul, wollen daraufhin auch zwei kleine quadratische Felder in ein großes quadratisches Feld umtauschen. Die Lehrperson teilt die Pläne, wie die Felder der Bauern liegen an die Schüler aus. Jede Gruppe bearbeitet eine Felderkombination. Sie sollen herausfinden, ob sich der Tausch für "ihren" Bauern lohnt. Bei Bauer Piebenbrink bilden die Felderquadrate, die an den Ecken zusammenstossen in der Mitte einen Leerraum in Form eines rechtwinkligen Dreiecks, bei Bauer Plattfuß ein stumpfwinkliges, bei Bauer Großmaul ein spitzwinkliges Dreieck. Die Schülergruppen präsentieren ihre Erkenntnisse. Sie haben festgestellt, dass bei Bauer Piepenbrink die Flächen der kleinen Quadrate zusammen die Fläche des großen Quadrates ergibt, bei Bauer Plattfuss das große Quadrat größer und bei Bauer Großmaul kleiner, als die Flächen der beiden kleinen Quadrate zusammen. Ein Schüler, der Bauer Piepenbrinks Felder bearbeitet hat, vermutet, dass die Flächengleichheit mit dem rechtwinkligen Dreieck zwischen den Feldern zu tun hat. So kommt die ganze Klasse auf die Dreiecke zwischen den Feldern zu sprechen, und stellt fest, dass bei den Quadraten, die um das rechtwinklige Dreieck angeordnet sind, die Flächen der beiden kleineren zusammen die Fläche des größeren ergeben. Da nun scheinbar oft von rechtwinkligen Dreiecken gesprochen wird, führt die Lehrperson die Bezeichnungen im rechtwinkligen Dreieck ein. Mit den neu erlernten Begriffen versuchen die Schülerinnen und Schüler im Plenum ihre Erkenntnisse bezüglich der Quadrate über den Dreiecksseiten in einem Satz zu formulieren. Schließlich wird eine befriedigende Formulierung gefunden. Diese schreiben die Schülerinnen und Schüler in ihre Theorieblätter. Anschließend überprüfen sie den behaupteten Satz selbständig an einigen Übungsaufgaben aus dem Buch. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B16-P-2201-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Doppellektion gibt die Lehrperson den Ablauf und das Thema bekannt. Für Math-MSV sind konstruktive Lösungen des Satzes von Pythagoras vorgesehen, während die Schülerinn...    mehr

    Zu Beginn der Doppellektion gibt die Lehrperson den Ablauf und das Thema bekannt. Für Math-MSV sind konstruktive Lösungen des Satzes von Pythagoras vorgesehen, während die Schülerinnen und Schüler von Math-ILF selbständig am Arbeitsplan weiter arbeiten werden. In der zweiten Stunde der Doppellektion steht für alle Schülerinnen und Schüler das Angebot zum Erkennen von rechtwinkligen Dreiecken auf dem Plan. Anschließend an diesen organisatorischen Teil fordert die Lehrperson die Lernenden auf, das neu erworbene mathematische Wissen vom Vortag nochmals zusammenzutragen, um die gelernten Inhalte explizit wieder ins Gedächtnis zu rufen. Danach erhalten die Schülerinnen und Schüler von Math-MSV den Auftrag, selbständig eine erste einfache Konstruktionsaufgabe zu lösen, während die Schülerinnen und Schüler von Math-ILF sich einen Arbeitsplatz außerhalb des Schulzimmers suchen. Die Lernenden von Math-MSV sollen ein rechtwinkliges Dreieck, von dem man die beiden Katheten kennt, konstruieren. Das Problem wurde bereits am Vortag erwähnt und erklärt. Nachdem die Schülerinnen und Schüler genügend Zeit hatten, die Konstruktionsaufgabe zu lösen, zeigt die Lehrperson die Lösung am Hellraumprojektor. Die Lernenden haben genügend Zeit, ihre Lösungen mit der von vorne zu vergleichen. Danach probieren die Schülerinnen und Schüler erneut selbständig eine neue Konstruktionsaufgabe zu lösen. Diesmal ist in einem rechtwinkligen Dreieck eine der Katheten und die Hypotenuse gegeben. Wieder werden die Lösungen kontrolliert. Die Lehrperson zeigt mit Hilfe der Lernenden zwei Lösungswege auf, entweder beginnend mit der Hypotenuse oder der Kathete. Nun gibt die Lehrperson eine letzte komplexere Aufgabe zum Konstruieren. Ein Quadrat mit der Seitenlänge 7cm ist gegeben. Die Schülerinnen und Schüler sollen selbständig ein Quadrat mit doppelter Fläche konstruieren. Nach dieser Schülerphase zeigt die Lehrperson zwei verschiedene Wege, wie man diese Aufgabe lösen kann. Einerseits kann man Parallelen zur Diagonalen durch die Eckpunkte des Quadrates zeichnen und so das Quadrat verdoppeln oder man nimmt den Satz von Pythagoras zur Hilfe, indem man zum gegebenen Quadrat im rechten Winkel ein gleich großes Quadrat zeichnet und über der so entstandenen Hypotenuse des rechtwinkligen Dreiecks das gesuchte Quadrat zeichnet. Anschließend erarbeitet die Lehrperson zusammen mit den Lernenden eine einfache Aufgabe im rechtwinkligen Dreieck, indem die beiden Katheten gegeben sind. Es geht darum zu erklären, ob es die Regel ist, dass die Seitenlängen in einem rechtwinkligen Dreieck immer ganzzahlig sein müssen, wie in den eben gelösten Aufgaben. Sie finden heraus, dass beim Berechnen der Seitenlängen im rechtwinkligen Dreieck beim Wurzelziehen Zahlen mit Kommastellen entstehen und entsprechend gerundet werden muss. Jetzt bearbeiten alle Lernenden (MSV + ILF) selbständig Aufgaben am Arbeitsplan. Bei den zu lösenden Aufgaben handelt es sich um eine algebraische Beweisführung, um Berechnungen im rechtwinkligen Dreieck, um Sehnenberechnungen und Tangentenberechnungen im und am Kreis und um die Berechnung von Diagonalen im Rechteck. Beim Läuten der Schulglocke machen die Schülerinnen und Schüler Pause. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    mehr

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation