Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: SCHWEIZ (Filter: Ort der Aufzeichnung)
ERGEBNISSICHERUNG (Filter: Schlagwörter)

Anzahl der Treffer: 16
  • Satzgruppe des Pythagoras (B01-P-2101-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Um das vor der Pause Gelernte und Angewandte noch einmal zu veranschaulichen, zeigt die Lehrperson einen Film. In einer ersten Szene zeigt ein Zimmermann seinem Nachbarn, wie er se...    mehr

    Um das vor der Pause Gelernte und Angewandte noch einmal zu veranschaulichen, zeigt die Lehrperson einen Film. In einer ersten Szene zeigt ein Zimmermann seinem Nachbarn, wie er seine neue Pergola rechtwinklig zum Haus stehen bekommt, in einer zweiten Szene erklärt ein altertümlicher Baumeister seinem Schüler den „Trick mit der Knotenschnur“. Anschliessend wird im Film der Ergänzungsbeweis kurz gezeigt. An Hand dieser Filmsequenz und einem Blatt, auf dem die unbeschrifteten Konstruktionen dieses Beweises abgebildet sind, sollen die Schülerinnen und Schüler den Beweis für sich noch einmal nachvollziehen. Da dies den meisten Schwierigkeiten macht, zeigt die Lehrperson den Beweis am Hellraumprojektor auf zwei verschiedene Arten vor. Schliesslich übernehmen die Schülerinnen und Schüler die Ausführungen der Lehrperson auf ihr Blatt. Danach erklärt die Lehrperson die Hausaufgaben, an denen die Schülerinnen und Schüler bis zum Ende der Lektion arbeiten können: In einem Raster soll die Länge eines Zick-Zack-Weges, der beim genauen Betrachten aus lauter Hypotenusen besteht, berechnet werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B06-P-2106-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreibe...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreiben und die aufgeschriebenen Aufträge dann auch ausführen: Sie sollen sechs Quadrate, die die Seitenlängen von zwei pythagoräischen Zahlentripeln aufweisen, ausschneiden, die zusammengehörenden zu Pythagorasfiguren zusammenlegen und ihre Beobachtungen dazu schriftlich festhalten. Während die Schülerinnen und Schüler die Aufträge zur Exploration des Satzes von Pythagoras der Reihe nach ausführen, erklärt die Lehrperson, was mit „zu einem Dreieck zusammenlegen“ gemeint ist, eben die Pythagorasfigur legen. Schließlich geht die Lehrperson den Aufgabenkatalog Punkt für Punkt durch, die Schüler geben ihre Beobachtungen an die Klasse weiter. Da der Satz des Pythagoras bei einigen Schülern schon bekannt ist, kommt dieser als Beobachtung bald zur Sprache. An dieser Stelle erklärt die Lehrperson, was der Satz des Pythagoras ist. Danach wird ein weiterer Punkt aus dem Katalog besprochen, was die Lehrperson dazu verleitet, der Klasse etwas über den Mathematiker und Philosophen Pythagoras aus dem Lexikon vorzulesen. Schließlich wird der letzte Punkt besprochen: Weitere Dreiecke suchen, von denen die Summe zweier Seitenquadrate das Quadrat der dritten ergibt. Danach sollen die Schüler selbständig einen Eintrag in ihr Theorieheft machen. Bevor der Film zu Ende ist, beginnt die Lehrperson den Beweis an Hand des Kathetensatzes vorzuzeigen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B06-P-2106-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Als erstes fordert die Lehrperson die Schülerinnen und Schüler auf, mit Hilfe einer Schnur, einem Filzstift und einem Maßstab einen rechten Winkel „herzustellen“. Keinem der Schüler...    mehr

    Als erstes fordert die Lehrperson die Schülerinnen und Schüler auf, mit Hilfe einer Schnur, einem Filzstift und einem Maßstab einen rechten Winkel „herzustellen“. Keinem der Schülerinnen und Schüler will das so recht gelingen. Die Lehrperson verweist auf das aktuelle Geometrie-Thema und zeigt den Anwesenden vor, wie mit zwölf gleichen Abschnitten ein rechtwinkliges Dreieck gelegt werden kann. Nun schreiben die Schülerinnen und Schüler den Theoriehefteintrag zum Beweis der vorigen Stunde in ihr Theorieheft ab. Wer fertig ist, löst einige einschrittige Aufgaben zur Seitenberechnung im rechtwinkligen Dreieck. Im Plenum wird eine mehrschrittige Aufgabe gelöst, mit der die Lehrperson darauf hinweisen will, dass die Dreiecke, die bei diesen Aufgaben vorkommen, nicht immer rechtwinklig sind, und dass die rechtwinkligen Dreiecke zuerst gesucht werden müssen. Anschließend werden die Resultate der Zusatzaufgaben kontrolliert. Danach lösen die Schülerinnen und Schüler weitere komplexe und mehrschrittige Aufgaben in Stillarbeit. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B08-P-2108-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion beenden die Schülerinnen und Schüler den Hefteintrag der ersten Lektion. Danach wird gemeinsam in der Klasse eine Aufgabe besprochen. Bei dieser Aufgabe geht ...    mehr

    Zu Beginn der Lektion beenden die Schülerinnen und Schüler den Hefteintrag der ersten Lektion. Danach wird gemeinsam in der Klasse eine Aufgabe besprochen. Bei dieser Aufgabe geht es um die Berechnung der Hypotenuse in einem rechtwinkligen Dreieck. Darauf erarbeitet die Lehrperson mit der Klasse die Berechnung der Kathete. In der Folge erteilt die Lehrperson der Klasse den Auftrag, am Arbeitsplan zu arbeiten, welcher zwölf Aufgaben umfasst. Die Schülerinnen und Schüler arbeiten in Gruppen. Die Aufgaben die von den Schülerinnen und Schülern bearbeitet werden, sind der gemeinsam bearbeiteten und der gemeinsam besprochenen Aufgabe zum größten Teil ähnlich. Es geht dabei um die Berechnung der Hypotenuse und der Katheten in rechtwinkligen Dreiecken. Ebenso werden zwei mehrschrittige Aufgaben bearbeitet (Berechnung von Diagonalen im Rechteck und der Basishhöhe von gleichschenkligen Dreiecken). (Projekt)    weniger

  • Satzgruppe des Pythagoras (B10-P-2110-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand einer Zahlentripelaufgabe den Satz des Pythagoras. Die Schüler(innen) versuchen in Partnerarbeit mit drei Schnüren mit vorgegebener Länge ein rechtwinkliges Dreieck auszulegen und tragen ihre Ergebnisse an der Wandtafel ein. Angeleitete Stillarbeitsphasen und öffentliche Kontrollphasen bez. Erarbeitungsphasen wechseln sich ab. Anschließend erarbeitet die Lehrperson gemeinsam mit den Schüler(innen) an der Wandtafel einen Hefteintrag, in welchem der Satz grafisch dargestellt wir. Die Schüler(innen) übernehmen die Wandtafelanschrift in ihr Heft. Danach erfolgt eine kurze Repetition der Seitenbezeichnungen im rechtwinkligen Dreieck. Darauf hält die Lehrperson die erarbeitete Formel an der Wandtafel fest und formuliert den Merksatz in Worten aus, die Schüler(innen) schreiben mit. Bevor die Lehrperson die Schüler(innen) in die Pause entlässt, gibt sie einen Ausblick darauf, was sie nach der kurzen Pause im zweiten Teil der Doppelstunde machen werden. Die Lektion endet mit organisatorischen Hinweisen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B10-P-2110-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach der Pause erarbeitet die Lehrperson zusammen mit der Klasse mit Hilfe von Papierquadraten und Dreiecken an der Wandtafel einen Zerlegungsbeweis. Anschließend übernehmen die Sch...    mehr

    Nach der Pause erarbeitet die Lehrperson zusammen mit der Klasse mit Hilfe von Papierquadraten und Dreiecken an der Wandtafel einen Zerlegungsbeweis. Anschließend übernehmen die Schüler(innen) die Wandtafeldarstellung in ihr Heft. Wer den Hefteintrag beendet hat, beginnt selbständig ein Arbeitsblatt mit Vorbereitungsaufgaben zur Wurzelberechnung zu lösen. Im anschließenden Klassengespräch gibt die Lehrperson Tipps zum Runden und zeigt auf, dass aus negativen Zahlen keine Wurzeln gezogen werden können. Zum Schluss der Lektion gibt die Lehrperson noch einen Ausblick auf die nächste Geometrielektion, welche am folgenden Tag stattfinden wird. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B11-P-2111-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papie...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papier. In der Klasse werden - ohne diese schriftlich fest zu halten - kurz die Bezeichnungen im rechtwinkligen Dreieck angesprochen. Danach versuchen die Schülerinnen und Schüler in Gruppen an Hand der vorliegenden Dreiecke Verhältnisregeln, die im rechtwinkligen Dreieck gelten sollen, herauszufinden. Da der Satz des Pythagoras bei einigen Schülerinnen und Schüler bereits bekannt ist, bringen zwei der drei Schülergruppen in einer Sammlungsphase dann auch zur Sprache, dass die Summe der Flächen der Kathetenquadrate der Fläche des Hypotenusenquadrats entspricht. Auf Grund dieser Annahme füllen die Schülerinnen und Schüler eine Tabelle an der Wandtafel mit den Maßen ihrer Dreiecke aus. Mit diesen Berechnungen wird überprüft, dass die Summe der Kathetequadrate der vermessenen Dreiecke ziemlich genau ihren Hypotenusenquadraten entspechen. Anschließend stellt die Lehrperson diese Aussage mit der Pythagorasfigur an der Wandtafel bildlich dar und zeigt dann ein Computerprogramm, das beim Verschieben des rechten Winkels eines rechtwinkligen Dreiecks auf dem Thaleskreis sofort alle Seitenquadrate berechnet. Den mathematischen Beweis des Satzes kündigt die Lehrperson für die nächste Lektion an. Dann legt sie eine Folie auf den Hellraumprojektor, auf der alle wichtigen Aussagen dieses Theorieteils festgehalten sind. Die Schülerinnen und Schüler übernehmen das auf der Folie Beschriebene in ihr Theorieheft. Diejenigen Schülerinnen und Schüler, die mit Abschreiben fertig sind, beginnen selbständig mit einschrittigen Berechnugen von Seiten eines gegebenen rechtwinkligen Dreiecks. Vor dem Ende der Lektion werden die Hausaufgaben - diese ersten vier Dreiecksseiten zu berechnen und eine Vorbereitungsaufgabe für den Beweis der nächsten Lektion - erteilt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B11-P-2111-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion werden die Hausaufgaben kontrolliert und besprochen. Anschließend sollen die Schülerinnen und Schüler aus den Teilen, die sie auf diese Lektion ausgeschnitten ...    mehr

    Zu Beginn der Lektion werden die Hausaufgaben kontrolliert und besprochen. Anschließend sollen die Schülerinnen und Schüler aus den Teilen, die sie auf diese Lektion ausgeschnitten haben, zwei gleich große Quadrate legen, was auch allen gelingt. An Hand eines Puzzles, das ein Schüler auf den Hellraumprojektor gelegt hat, erkennen die Schülerinnen und Schüler sehr schnell, dass die beiden Quadrate gleich groß sein müssen und, wenn von jedem Quadrat die vier rechtwinkligen Dreiecke mit den Seiten a, b und c entfernt werden, beim einen großen Quadrat zwei kleine Quadrate mit den Flächen a2 und b2 und beim andern großen Quadrat ein Quadrat mit der Fläche c2 übrigbleiben, was beweist, dass der angenommene Satz richtig ist. Die Lehrperson schreibt diese Erkenntniss als Rechnug neben die gelegten Quadrate. Die Schülerinnen und Schüler kleben ihre Quadrate und Dreiecke in ihr Theorieheft und schreiben dazu die vorgegebene Rechnung. Anschließend üben die Schülerinnen und Schüler an den noch meist einschrittigen Übungsaufgaben weiter. Als Hausaufgabe sollen die Schülerinnen und Schüler einen zweiten Beweis führen. Anleitung dazu wurde von der Lehrperson ausgeteilt. (Projekt)     weniger

  • Satzgruppe des Pythagoras (B13-P-2113-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson betritt das Schulzimmer etwas verspätet, weshalb zu Beginn der Lektion das Mikrofon installiert wird. Danach wird in der Klasse der Inhalt der letzten Stunde während ein...    mehr

    Die Lehrperson betritt das Schulzimmer etwas verspätet, weshalb zu Beginn der Lektion das Mikrofon installiert wird. Danach wird in der Klasse der Inhalt der letzten Stunde während einer öffentlichen Phase aufgefrischt. Dabei wird von Schülern ein rechtwinkliges Dreieck an die Wandtafel skizziert, bei dem die Beschriftung stimmen soll, sodass die Seite c der Hypotenuse entspricht. Eine weitere Schülerin zeichnet die Flächenquadrate über den Seiten, und diese werden danach beschriftet mit a2, b2, c2. Darauf wird die Formel a2 + b2 = c2 an die Wandtafel geschrieben sowie deren Ableitungen. In der Folge formulieren verschiedene Schülerinnen und Schüler den Satz des Pythagoras in eigenen Worten. Die Lehrperson präsentiert die eigentliche Ausformulierung des Satzes und mehrere Schülerinnen und Schüler wiederholen diese mündlich. Anhand eines fragend-entwickelnden Lehrgesprächs bespricht die Klasse nun das Wurzelziehen, um die Seiten c, a, b zu erhalten. Dies macht die Klasse zuerst mit den Variablen, danach wird das Wurzelziehen konkret anhand des bekannten Zahlentrippels 3, 4, 5 behandelt. Danach leitet die Lehrperson die Schülerinnnen und Schüler an, einen Theoriehefteintrag zu machen. Die Schülerinnen und Schüler übernehmen Titel und Ausformulierung vom Hellraumprojektor in ihr Heft und konstuieren die Zeichnung zum Satz mit Hilfe des Thaleskreises, mit vorgegebenen Massen und schreiben die Formel und deren Ableitungen von der Wandtafel ab. Danach bespricht die Klasse die Hausaufgaben, bei denen es um die Bestätigung des Satzes von Pythagoras geht. Mit einem fragend- entwickelnden Lehr- und Lerngespräch leitet die Lehrperson zur Beweisführung des Satzes von Pythagoras über. Es handelt sich dabei um den Ergänzungsbeweis. Dieser kann nicht zu Ende entwickelt werden, da es in die Pause klingelt. Er wird in der dritten Stunde weiter bearbeitet. Zum Schluss der Stunde gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation