Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: SCHWEIZ (Filter: Ort der Aufzeichnung)
"PROBLEMORIENTIERTER UNTERRICHT" (Filter: Schlagwörter)

Anzahl der Treffer: 18
  • Satzgruppe des Pythagoras (B01-P-2101-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler...    mehr

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler spontan. Ausgehend von der Frage wie „draußen auf dem Feld“ im rechten Winkel gebaut werden könne, zeigt die Lehrperson, dass mit einer Schnur ein rechtwinkliges Dreieck entsteht, wenn die Längen der drei Schnurabschnitte im Verhältnis drei, vier und fünf zueinander stehen. Danach fordert die Lehrperson die Schüler und Schülerinnen auf, in Gruppen zu diskutieren und herauszufinden wie die Zahlen der pythagoräischen Zahlentripeln mathematisch zusammenhängen. Dazu wird ein Blatt mit verschiedenen Zahlentripeln abgegeben. An einem Gruppentisch ist der Satz des Pythagoras bereits bekannt. Diese Schülerinnen und Schüler werden nun auf die anderen Gruppen verteilt, um so ihr Wissen an den Rest der Klasse weiterzugeben. Um die Aussagen der Schülerinnen und Schüler zu bestätigen, stellt die Lehrperson den Satz des Pythagoras an der Wandtafel mit einem roten Hypotenusen- und grünen Kathetenquadraten graphisch dar. Danach berechnen die Schülerinnen und Schüler mit dem neu gelernten Satz selbständig die fehlenden Seiten von verschiedenen rechtwinkligen Dreiecken, ohne dass die Lehrperson vorgezeigt hat, wie solche Aufgaben zu lösen sind. Nachdem die Schülerinnen und Schüler Gelegenheit hatten, ihre Resultate zu korrigieren, erhalten sie ein Blatt, auf dem sie die Pythagorasfigur entsprechend der Wandtafeldarstellung anmalen und in ihr Theorieheft einkleben. Danach werden in Stillarbeit weitere Dreiecksseiten berechnet und kontrolliert. Um die Lektion abzurunden, wiederholt die Lehrperson vor der Pause das in dieser Lektion Gelernte. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B05-P-2105-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach einigen organisatorischen Bemerkungen erteilt die Lehrperson einen neuen Auftrag. Es handelt sich um eine Vorbereitungsaufgabe, die Voraussetzung für die problemorientierte Er...    mehr

    Nach einigen organisatorischen Bemerkungen erteilt die Lehrperson einen neuen Auftrag. Es handelt sich um eine Vorbereitungsaufgabe, die Voraussetzung für die problemorientierte Erarbeitung des neuen Inhalts, welchen die Lehrperson aber nicht verraten will, ist. Die Schülerinnen und Schüler erhalten farbige Papierstreifen, die sie in Dreiecke schneiden und dann nach einer bestimmten Vorlage ins Heft kleben müssen. Die Schülerinnen und Schüler sollen die rechtwinkligen Dreiecke so anordnen, dass zwei identische Quadrate entstehen, die jeweils vier der farbigen rechtwinkligen Dreiecke und eine weiße quadratische Fläche, beziehungsweise zwei weiße unterschiedlich große quadratische Flächen, enthalten. Sie arbeiten in Einzelarbeit. Nachdem die ersten Lernenden mit dem Auftrag fertig sind, erteilt die Lehrperson einen weiteren Auftrag. Die Lernenden sollen versuchen, Tatsachen zu den Quadraten herauszufinden. Anschließend an diese explorative Einzelarbeit bespricht die Lehrperson die gefundenen Behauptungen mit den Schülerinnen und Schülern. Gemeinsam finden sie heraus, dass die beiden kleinen weißen quadratischen Flächen gleich groß sein müssen wie die große weiße Fläche im anderen Quadrat. Anschließend an diese Erkenntnis erarbeitet die Lehrperson zusammen mit der Klasse einen Ergänzungsbeweis. Die Lehrperson notiert fortwährend an der Wandtafel. Zwei neue Begriffe „Kathete und Hypotenuse“ werden während der Beweisführung eingeführt. Bevor die Lernenden die Wandtafeldarstellung in ihr Heft übernehmen, um das Gelernte zu vertiefen, gibt die Lehrperson kurz einen geschichtlichen Hintergrund, wer die Formel a2+b2=c2 herausgefunden und wo diese Person gelebt hat. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B06-P-2106-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreibe...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreiben und die aufgeschriebenen Aufträge dann auch ausführen: Sie sollen sechs Quadrate, die die Seitenlängen von zwei pythagoräischen Zahlentripeln aufweisen, ausschneiden, die zusammengehörenden zu Pythagorasfiguren zusammenlegen und ihre Beobachtungen dazu schriftlich festhalten. Während die Schülerinnen und Schüler die Aufträge zur Exploration des Satzes von Pythagoras der Reihe nach ausführen, erklärt die Lehrperson, was mit „zu einem Dreieck zusammenlegen“ gemeint ist, eben die Pythagorasfigur legen. Schließlich geht die Lehrperson den Aufgabenkatalog Punkt für Punkt durch, die Schüler geben ihre Beobachtungen an die Klasse weiter. Da der Satz des Pythagoras bei einigen Schülern schon bekannt ist, kommt dieser als Beobachtung bald zur Sprache. An dieser Stelle erklärt die Lehrperson, was der Satz des Pythagoras ist. Danach wird ein weiterer Punkt aus dem Katalog besprochen, was die Lehrperson dazu verleitet, der Klasse etwas über den Mathematiker und Philosophen Pythagoras aus dem Lexikon vorzulesen. Schließlich wird der letzte Punkt besprochen: Weitere Dreiecke suchen, von denen die Summe zweier Seitenquadrate das Quadrat der dritten ergibt. Danach sollen die Schüler selbständig einen Eintrag in ihr Theorieheft machen. Bevor der Film zu Ende ist, beginnt die Lehrperson den Beweis an Hand des Kathetensatzes vorzuzeigen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B07-P-2107-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will mit den Lernenden den Satz des Pythagoras kennenlernen und schauen, wie Pythagoras zu dieser Erkenntnis g...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will mit den Lernenden den Satz des Pythagoras kennenlernen und schauen, wie Pythagoras zu dieser Erkenntnis gelangte. Problemorientiert entwickelt die Lehrperson mit der Klasse den Satz von Pythagoras. Sie lässt die Lernenden auf dem verteilten Blatt ein Quadrat mit einer vorgegebenen Länge zeichnen. Das rechtwinklige Dreieck, welches sie über der oberen Kante mit Hilfe des Thaleskreises konstruieren sollen, lässt die Lehrperson die Schülerinnen und Schüler frei wählen, damit zu einem späteren Zeitpunkt bewiesen werden kann, dass der Satz von Pythagoras in jedem rechtwinkligen Dreieck Gültigkeit hat. Über den Katheten des rechtwinkligen Dreiecks lässt die Lehrperson die Lernenden die Kathetenquadrate einzeichnen. Während die Schülerinnen und Schüler in Einzelarbeit die drei entstandenen Quadrate einfärben, ermuntert die Lehrperson diejenigen Schülerinnen und Schüler, die schon fertig sind, sich zu überlegen, was wohl Pythagoras herausgefunden hat. Nach dieser Einzelarbeit nennt ein Schüler die Idee, dass die beiden kleinen Quadrate zusammen die gleiche Fläche haben wie das große Quadrat. Die Lehrperson übernimmt diesen Gedanken und erarbeitet gemeinsam mit den Schülerinnen und Schüler allgemeine Formulierungen. Die Lehrperson kann nun folgende Gleichung an die Wandtafel schreiben: c2=b2+a2. Zu dieser Formel lässt die Lehrperson die Schülerinnen und Schüler einen Zerlegungsbeweis ausführen. Sie lässt die Lernenden die Quadrate über den Katheten in zwei, beziehungsweise drei Flächen einteilen. Die so entstandenen Stücke schneiden die Schülerinnen und Schüler aus und versuchen diese im Quadrat über der Hypotenuse selbständig entdeckend auszulegen. Wem dies gelungen ist, hilft anderen. Während dieser Schülerarbeitsphase legt die Lehrperson als Hilfe auf dem Hellraumprojektor eine mögliche Anordnung der Flächen auf dem Hypotenusenquadrat auf. Nachdem jeder Lernende die Möglichkeit hatte, eine Lösung zu finden, verteilt die Lehrperson ein Theorieblatt, um die eben gelernten Inhalte zu vertiefen. Jede Schülerin und jeder Schüler erhält Gelegenheit, das Blatt zu studieren. Danach werden in der Klasse die Begriffe "Kathete" und "Hypothenuse" erörtert. Das Theorieblatt enthält einen weiteren Beweis, den die Lehrperson aus Zeitmangel auf die nächste Stunde verschiebt. Nachdem eine Schülerin den Satz nochmals laut vorgelesen hat, zeigt die Lehrperson anhand eines Zahlenbeispiels, wie man mit dem Satz von Pythagoras Seiten im rechtwinkligen Dreieck berechnen kann. Sie zeigt, wie man aus den beiden Katheten die Hypothenuse berechnen kann. Im Anschluss daran, lösen sie gemeinsam drei ähnliche einschrittige Aufgaben. Die Lehrperson schließt die Stunde, indem sie die Hausaufgaben bekannt gibt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B08-P-2108-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    In einer längerdauernden öffentlichen problemorientierten Phase (Zahlentripel) wird der Satz des Pythagoras problemorientiert erarbeitet. Zuerst gibt die Lehrperson dazu den Schüleri...    mehr

    In einer längerdauernden öffentlichen problemorientierten Phase (Zahlentripel) wird der Satz des Pythagoras problemorientiert erarbeitet. Zuerst gibt die Lehrperson dazu den Schülerinnen und Schülern den Auftrag, ein rechtwinkliges Dreieck zu zeichnen, dieses zu beschriften und die Seiten zu messen. Danach werden von den Schülerinnen und Schülern die Maße dreier, von ihnen gezeichneter Dreiecke diktiert, und die Lehrperson schreibt die Maße an die Wandtafel. Darauf trägt die Klasse in einem entwickelnden Lehr- und Lerngespräch beobachtbare Zusammenhänge zwischen den Dreieckseiten ihrer gezeichneten rechtwinkligen Dreiecke zusammen. Ergänzend dazu schreibt die Lehrperson das Zahlentripel 3, 4, 5 an die Wandtafel und gibt den Schülerinnen und Schülern den Auftrag die Quadratzahlen der Seitenlängen von ihrem und von diesem Dreieck zu berechnen. Dies geschieht alles in einer öffentlichen Phase und in der Folge des entwickelnden Lehr- und Lerngesprächs wird die Formel des Pythagoras genannt. Diese wird von der Klasse mit den Beispielen an der Wandtafel überprüft. Dabei stellt die Klasse fest, dass aufgrund von Messungen Ungenauigkeiten auftreten. Die Lehrperson äußert dazu, dass die Formel von Pythagoras aber trotzdem als allgemeingültig angenommen werden kann. Die Formel a2+b2 =c2 wird von der Lehrperson an die Wandtafel geschrieben. In der Folge entwickelt die Lehrperson mit der Klasse problemorientiert einen Beweis des Satzes von Pythagoras. Dabei wird zuerst anhand eines entwickelnden Lehr- und Lerngesprächs besprochen, wie die Quadratzahlen grafisch dargestellt werden. Darauf wird die Formel a2+b2 =c2 von den Schülerinnen und Schülern mit ihren Legeformen aus Plastik dargestellt, die Lehrperson zeigt es gleichzeitig am Hellraumprojektor vor. Nun gibt die Lehrperson die Anweisung, aus den vorhandenen Dreiecken und Vierecken zwei deckungsgleiche Vierecke zu bauen. Die zwei deckungsgleichen Vierecke entsprechen der grafischen Darstellung des Ergänzungsbeweises. Da einigen Schülerinnen und Schülern das Material fehlt, arbeiten sie in Gruppen. In der nächsten Phase entwickelt die Lehrperson auf der Basis der gelegten Quadrate den Beweis. Darauf benennt die Lehrperson die Formel als Satz des Pythagoras. Bei der Erläuterung des Arbeitsplans, macht die Lehrperson die Lernenden darauf aufmerksam, dass sie in den nächsten Wochen mit dieser Formel rechnen werden. Die Lehrperson erklärt weitere organisatorische Belange genau: Das selbständige Aufstellen des Zeitrahmens, die Anzahl der Aufgaben, welche von den Lernenden bearbeitet werden und die Arbeitsform (Arbeit in Gruppen). Zum Schluss der Stunde gibt die Lehrperson den Auftrag, einen Theoriehefteintrag zu schreiben. Dafür schreiben die Schülerinnen und Schüler die Anschriften der Wandtafel und einen Teil des Beweises ab und einen anderen Teil des Beweises, den sie auf einem Blatt erhalten haben, kleben sie ins Heft. Wer mit dieser Arbeit nicht fertig wird, macht sie nach der Pause fertig. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B10-P-2110-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand einer Zahlentripelaufgabe den Satz des Pythagoras. Die Schüler(innen) versuchen in Partnerarbeit mit drei Schnüren mit vorgegebener Länge ein rechtwinkliges Dreieck auszulegen und tragen ihre Ergebnisse an der Wandtafel ein. Angeleitete Stillarbeitsphasen und öffentliche Kontrollphasen bez. Erarbeitungsphasen wechseln sich ab. Anschließend erarbeitet die Lehrperson gemeinsam mit den Schüler(innen) an der Wandtafel einen Hefteintrag, in welchem der Satz grafisch dargestellt wir. Die Schüler(innen) übernehmen die Wandtafelanschrift in ihr Heft. Danach erfolgt eine kurze Repetition der Seitenbezeichnungen im rechtwinkligen Dreieck. Darauf hält die Lehrperson die erarbeitete Formel an der Wandtafel fest und formuliert den Merksatz in Worten aus, die Schüler(innen) schreiben mit. Bevor die Lehrperson die Schüler(innen) in die Pause entlässt, gibt sie einen Ausblick darauf, was sie nach der kurzen Pause im zweiten Teil der Doppelstunde machen werden. Die Lektion endet mit organisatorischen Hinweisen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B11-P-2111-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papie...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papier. In der Klasse werden - ohne diese schriftlich fest zu halten - kurz die Bezeichnungen im rechtwinkligen Dreieck angesprochen. Danach versuchen die Schülerinnen und Schüler in Gruppen an Hand der vorliegenden Dreiecke Verhältnisregeln, die im rechtwinkligen Dreieck gelten sollen, herauszufinden. Da der Satz des Pythagoras bei einigen Schülerinnen und Schüler bereits bekannt ist, bringen zwei der drei Schülergruppen in einer Sammlungsphase dann auch zur Sprache, dass die Summe der Flächen der Kathetenquadrate der Fläche des Hypotenusenquadrats entspricht. Auf Grund dieser Annahme füllen die Schülerinnen und Schüler eine Tabelle an der Wandtafel mit den Maßen ihrer Dreiecke aus. Mit diesen Berechnungen wird überprüft, dass die Summe der Kathetequadrate der vermessenen Dreiecke ziemlich genau ihren Hypotenusenquadraten entspechen. Anschließend stellt die Lehrperson diese Aussage mit der Pythagorasfigur an der Wandtafel bildlich dar und zeigt dann ein Computerprogramm, das beim Verschieben des rechten Winkels eines rechtwinkligen Dreiecks auf dem Thaleskreis sofort alle Seitenquadrate berechnet. Den mathematischen Beweis des Satzes kündigt die Lehrperson für die nächste Lektion an. Dann legt sie eine Folie auf den Hellraumprojektor, auf der alle wichtigen Aussagen dieses Theorieteils festgehalten sind. Die Schülerinnen und Schüler übernehmen das auf der Folie Beschriebene in ihr Theorieheft. Diejenigen Schülerinnen und Schüler, die mit Abschreiben fertig sind, beginnen selbständig mit einschrittigen Berechnugen von Seiten eines gegebenen rechtwinkligen Dreiecks. Vor dem Ende der Lektion werden die Hausaufgaben - diese ersten vier Dreiecksseiten zu berechnen und eine Vorbereitungsaufgabe für den Beweis der nächsten Lektion - erteilt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B12-P-2112-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuc...    mehr

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuches und durch offene Fragen) bekannt. Danach zeigt die Lehrperson Bilder von Pythagoras am Hellraumprojektor und erzählt ausführlich von der Person des Pythagoras, von dessen Geschichte und Leistungen. Darauf schreibt die Lehrperson die Formel a2+b2=c2 an die Wandtafel mit dem Hinweis, dass die Schülerinnen und Schülern diese Formel so erforschen werden, damit sie sie dann einer anderen Person erklären können. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, gibt die Lehrperson den weiteren Ablauf der Stunde und das Ziel bekannt. Zur Erforschung des Satzes von Pythagoras arbeiten die Schülerinnen und Schüler zu zweit im Karusellprinzip an drei verschiedenen Aufträgen. Nach einigen Minuten wird die Partnerarbeit von der Lehrperson unterbrochen. Einzelne Schülerinnen und Schüler teilen der ganzen Klasse die bereits gemachten Gedanken und die ersten Erkenntnisse mit. Dies soll die anderen Schülerinnen und Schülern bei der Bearbeitung der noch nicht bearbeiteten Aufträge unterstützen. Nun wechseln die Lernenden ihre Plätze, um in Partnerarbeit einen neuen Auftrag zu bearbeiten und zu forschen. Nach etwa 10 Minuten neuerlicher Partnerarbeit bricht der Film ab. Auftrag 1: Bei der einen Aufgabenstellung handelt es sich um die grafische Darstellung des Ergänzungsbeweises. Die Fläche a2 und b2 und vier rechtwinklige Dreiecke (Quadrat) sind dabei gleich groß wie c2 und vier rechtwinklige Dreiecke (Quadrat). Dabei soll gezeigt werden, dass a2+b2=c2 (indem die vier gleich großen, rechtwinkligen Dreiecke von den Quadraten je abgezählt werden). Dabei handelt es sich um de Ergänzungsbeweis. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 2: Bei der zweiten Aufgabenstellung erhalten die Schülerinnen und Schüler mehrere Blätter. Die Grundlage der Aufgabenstellung bildet die Abbildung eines Parketts, das aus verschiedenen Rechtecken und drei verschieden großen Quadraten besteht. Nun sollen die Schülerinnen und Schüler das kleine Quadrat in zwei, das mittlere in drei Vielecke aufteilen und alle Vielecke sollen zu einem neuen Quadrat zusammengefügt werden, das auf das Parkettmuster passt. Bei dieser Aufgabenstellung handelt es sich um einen Zerlegungsbeweis des Satzes von Pythagoras. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 3: Bei der dritten Aufgabenstellung handelt es sich um das Nachvollziehen der Technik, anhand der die Ägypter rechte Winkel konstruierten. Rechte Winkel konstruierten die Ägypter mit Hilfe von zusammengeknoteten Seilstücken, die sie in zwölf gleich große Abschnitte einteilten. Dabei ist der Bezug zu den Seitenverhältnissen (3:4:5/ Zahlentripel) eines rechtwinkligen Dreiecks ausschlaggebend. Auch hier werden die Schülerinnen und Schüler aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag und der Vorgehensweise der Ägypter in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B12-P-2112-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse st...    mehr

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse statt. Neue Gedanken, Erkenntnisse und Lösungsversuche zu den einzelnen Aufträgen werden von einzelnen Schülerinnen und Schülern der Klasse mitgeteilt. Danach legen die Schülerinnen und Schüler ihre Arbeitsblätter an den dritten, von ihnen bisher unbearbeiteten Posten, den sie nach einer fünfminütigen Pause bearbeiten werden (im Video ist die Pause als Schnitt bei 00:14:47 erkennbar). Nach der Pause arbeiten die Schülerinnen und Schüler wiederum in Partnerarbeit selbständig entdeckend am dritten und letzten, von ihnen noch nicht bearbeiteten, Auftrag. Die Schülerinnen und Schüler formulieren danach in der Gruppe (zwei bis drei Partnerarbeitsgruppen zusammen) ihre Erkentnisse zur Aufgabe möglichst kurz und prägnant und bestimmen eine Schülerin/ einen Schüler, die/ der dies der ganzen Klasse am Hellraumprojektor vorträgt. Die Lehrperson gibt nun einen kurzen Überblick zum weiteren Stundenverlauf: Die Gruppen teilen ihre Überlegungen zu den drei Aufträgen vor der Klasse vor. Als erstes tragen zwei Schüler ihre Erkenntnisse zum Seiltrick der Ägypter vor und bestätigen dabei die Behauptung a2+b2=c2. Danach erzählt die Lehrperson kurz, wozu die Ägypter die Konstruktion des rechten Winkels benötigten. Darauf äußert sich ein Schüler am Hellraumprojektor zur Darstellung des Ergänzungsbeweises und rechnet vor, weshalb hier die Behauptung a2+b2=c2 stimmt. In der Folge werden die Erkenntnisse zum Parkett von zwei Schülerinnen geäußert. Sie bestätigen, dass das größte Quadrat gleich groß ist, wie die zwei kleineren zusammen. Zum Schluss der Doppellektion klärt die Lehrperson organisatorische Fragen bezüglich der nächsten Stunden und der Hausaufgaben. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B13-P-2113-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nenne...    mehr

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nennen die Schülerinnen und Schüler den Kreis, die Mittelsenkrechte, die Mittelparalelle, den Thaleskreis und die Winkelhalbierende als geometrische Orte. Darauf erteilt die Lehrperson den Schülerinnen und Schülern einen Auftrag, bei dem sie ein rechtwinkliges Dreieck zeichnen sollen, indem sie den Thaleskreis über der Seite c konstruieren. Danach sollen sie die Seiten a, b und über den drei Seiten die entsprechenden Flächenquadrate zeichnen. Da der Auftrag auf Häuschenpapier gezeichnet wird, sollen die Schülerinnen und Schüler danach die Häuschen der einzelnen Flächenquadrate zählen und miteinander vergleichen. Schlussfolgerungen sollen dabei an der Tafel notiert werden. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, werden in einem entwickelnden Lehr- und Lerngespräch die Seitenbezeichnungen (Hypotenuse und Katheten) in einem rechtwinkligen Dreieck erarbeitet. Danach arbeiten die Schülerinnen und Schüler zu zweit an dem zuvor erteilten Auftrag. Bei der Auswertung erklärt ein Schüler am Hellraumprojektor, wie er die Flächen berechnet hat. Eine Schülerin präsentiert die Schlussfolgerung, dass die Summe der Flächenquadrate über den Katheten gleich groß ist, wie das Flächenquadrat über der Hypotenuse. Während der Stillarbeitsphase wurden von den Schülerinnen und Schülern die Formel a2 + b2 = c2 und deren Ableitungen an der Wandtafel notiert. Nun überprüft die Klasse die Formel a2 + b2 = c2 mit dem Taschenrechner und befindet sie als richtig. Mit der Unterstützung der Lehrperson und der Gleichungslehre, werden auch die Umkehrungen der Formel als richtig anerkannt. Zum Schluss der Lektion gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation