Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: MATHEMATIK (Filter: Unterrichtsfach)
PYTHAGORAS-ZAHLENTRIPEL (Filter: Schlagwörter)

Anzahl der Treffer: 19
  • Satzgruppe des Pythagoras (A07-P-1110-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden zu versorgen. Danach findet der eigentliche Unterrichtseinsti...    mehr

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden zu versorgen. Danach findet der eigentliche Unterrichtseinstieg statt. Die Lehrperson hält eine zusammengeknotete Schnur in der Hand und sagt der Klasse, dass sie sich diese Stunde mit einer solchen Schnur beschäftigen werden. In einem fragend-entwickelnden Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler, wozu eine zusammengeknüpfte Schnur, überhaupt gebraucht werden kann. Darauf verteilt die Lehrperson je eine Schnur pro Gruppentisch. Währenddem erzählt sie, wozu die Ägypter die Seile verwendeten. Die Klasse benennt danach das Spezielle, das diesen zusammengeknüpften Schnüren gemeinsam ist. Als nächstes verteilt die Lehrperson ein Arbeitsblatt. Anhand von fünf Aufträgen werden die Schülerinnen und Schüler zur Beschäftigung mit den Schnurabschnitten angeleitet. Sie arbeiten selbständig explorativ in dreier oder vierer Gruppen an ihren Gruppentischen. Die Lernenden bilden dabei zuerst ein rechtwinkliges Dreieck. Danach bestimmen sie die einzelnen Seitenlängen des Schnurdreiecks und bestimmen, wo sich der rechte Winkel im Dreieck befindet. Dies versuchen sie in Worten schriftlich zu erklären. Zum Schluss schreiben sie sich Fragen auf, die sich stellten. Die Ergebnisse werden gemeinsam ausgewertet. Dabei schreibt die Lehrperson alle drei Seitenlängen der verschiedenen Gruppenseile an die Wandtafel. Nachdem die Lage des rechten Winkels besprochen wurde, wird in einem fragend-entwickelnden Lehrgespräch die Beschriftung des rechten Winkels und die Benennung der längsten und der beiden kürzeren Seiten im rechtwinkligen Dreieck (Hypotenuse, Katheten) geklärt. Danach leitet die Lehrperson die Lernenden an, die neu gelernten Bezeichnungen der Seiten in ihr Heft zum Dreieck, das sie zuvor in der Gruppenarbeit in ihr Heft gezeichnet hatten, zu notieren. Die Notizen werden darauf von den Schülerinnen und Schülern in Einzelarbeit in ihr Heft übernommen. Nach der Stillarbeit bestimmt die Klasse im öffentlichen Unterrichtsgespräch die Hypotenusen und Katheten der Schnurdreiecke anhand der Längenmaße an der Wandtafel. Die Lehrperson notiert dies an die Wandtafel. Zum Schluss der Stunde schreibt die Lehrperson Fragen, die sich bei der Gruppenarbeit gestellt haben, ebenso an die Wandtafel. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A07-P-1110-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    In der zweiten Stunde werden die Fragen der Gruppenarbeit der ersten Stunde zusammengetragen. Danach zeichnet die Lehrperson drei rechtwinklige Dreiecke an die Wandtafel. Das Ziel ...    mehr

    In der zweiten Stunde werden die Fragen der Gruppenarbeit der ersten Stunde zusammengetragen. Danach zeichnet die Lehrperson drei rechtwinklige Dreiecke an die Wandtafel. Das Ziel dabei ist, die Seitenbenennungen in rechtwinkligen Dreiecken zu trainieren. Als Training benennt die Klasse nun jeweils die Hypotenuse und die Katheten richtig. In der Folge erteilt die Lehrperson den Schülerinnen und Schülern den Auftrag, den Zusammenhang der Seiten beim rechtwinkligen Dreieck anhand eines Arbeitsblattes zu besprechen. Die Schülerinnen und Schüler arbeiten selbständig entdeckend in Gruppen an den Gruppentischen. Dabei geht es um die Entdeckung und das Verständnis verschiedener Zahlentripel und die Ausformulierung des Satzes von Pythagoras. Nach der Gruppenarbeit werden die Entdeckungen unter der Leitung der Lehrperson in der Klasse ausgetauscht. Dabei wird der Satz des Pythagoras ausformuliert und die Formel des Satzes wird im gemeinsamen Lehr- und Lerngespräch erarbeitet, genauso wie der Kehrsatz (Das Dreieck ist rechtwinklig, wenn ...). Zur Überprüfung des Kehrsatzes wird von einem Schüler an der Wandtafel eine Aufgabe gelöst. Nun bezeichnet die Lehrperson das, in dieser Lektion entwickelte, als den Satz des Pythagoras. Darauf schreiben die Schülerinnen und Schüler Titel, Formel und die Ausformulierung des Satzes von Pythagoras von der Wandtafel in ihr Heft ab. Zum Schluss der Lektion verteilt die Lehrperson die Hausaufgaben. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A08-P-1113-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die zweite Lektion beginnt mit organisatorischen Angaben, wobei die Lehrperson auch das Thema der Lektion bekannt gibt: der Satz des Pythagoras. Die Lehrperson lässt eine CD-Aufnahme...    mehr

    Die zweite Lektion beginnt mit organisatorischen Angaben, wobei die Lehrperson auch das Thema der Lektion bekannt gibt: der Satz des Pythagoras. Die Lehrperson lässt eine CD-Aufnahme laufen, auf der sich eine Stimme als Pythagoras von Samos vorstellt, den Satz des Pythagoras geometrisch und algebraisch erklärt und schließlich die Schülerinnen und Schüler zu einer Überprüfung des Satzes anleitet. Die Ergebnisse der Schülerinnen und Schüler werden im Plenum mit dem Satz des Pythagoras verglichen. Dabei erklärt die Lehrperson noch einmal genau, wie gerechnet werden muss. Danach greift die Lehrperson die Aussagen des „Pythagoras“ zur geometrischen Darstellung des Satzes auf, skizziert diese an der Wandtafel und verweist die Schülerinnen und Schüler auf das Blatt, das sie soeben bearbeitet haben und auf welchem der Satz des Pythagoras auch geometrisch dargestellt ist. Dann erzählt „Pythagoras“ aus der Geschichte des Satzes, der nach ihm benannt wurde. Die Schülerinnen und Schüler prüfen und formulieren den Satz an drei selbst gezeichneten Dreiecken, bei denen sie die rechten Winkel immer wieder anders benennen, und werden, nachdem diese Aufgabe kontrolliert wurde, von der Lehrperson noch einmal auf die Anwendung des Satzes hingewiesen. Nachdem der Satz noch einmal in Worten formuliert und ins Theorieheft geschrieben wurde, verweist die Lehrperson auf den Ablauf der nächsten Lektionen. Dann formulieren die Schülerinnen und Schüler im Plenum den Satz des Pythagoras für diverse rechtwinklige Dreiecke, deren Seiten andere Namen als a, b und c haben. Schließlich erhalten sie noch Hausaufgaben eben dieser Art, mit denen sie bis zum Ende der Lektion beginnen können. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A09-P-1114-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des...    mehr

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des Satzes von Pythagoras damit ein, dass sie den Schülerinnen und Schülern sagt, dass sie heute ein Phänomen kennenlernen, mit dem sich die Ägypter schon beschäftigt haben. Anhand eines Bildes von ägyptischen Pyramiden sollen die Schülerinnen und Schüler in der Klasse überlegen, wie im Wüstensand die Grundfläche der Pyramide wohl rechtwinklig abgesteckt werden könnte. Die Schülerinnen und Schüler äußern verschiedene, jedoch unbrauchbare Ideen zur Lösung dieses Problems. Schließlich teilt die Lehrperson vorbereitete Knotenschnüre an Schülergruppen aus. In diesen Gruppen sollen die Schülerinnen und Schüler nun selbständig herausfinden, wie mit Hilfe einer solchen Schnur ein rechter Winkel gelegt werden kann. Dank anregender Tipps der Lehrperson gelingt es schließlich allen Gruppen ein rechtwinkliges Dreieck mit den Seitenverhältnissen drei, vier, fünf zu legen. Anschließend wird die Lösung kurz an der Wandtafel dargestellt. Nachdem die Begriffe Kathete und Hypotenuse wieder ins Gedächtnis gerufen wurden, versucht die Klasse hinter den Zusammenhang der drei Zahlen drei, vier und fünf zu kommen. Im Plenum werden verschiedene Rechenoperationen getestet, auch das Quadrieren. Dabei wird die These aufgestellt, dass die Summe der Flächen der beiden Kathetenquadrate die Fläche des Hypotenusenquadrates ergibt. Zu dieser Annahme sollen die Schülerinnen und Schüler bis zur Pause selbständig weitere ganzzahlige Beispiele suchen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A09-P-1114-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der L...    mehr

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson den Satz des Pythagoras als Merksatz und schreiben in ihr Theorieheft. Ein Schüler übersetzt den Merksatz in die Formel a2+ b2= c2. Um zu überprüfen, ob die Formel denn nicht auch für andere Dreiecke gelten könnte, zeichnet jeder Schüler und jede Schülerin ein beliebiges Dreieck und probiert den Satz daran aus. Die Lehrperson stellt stellvertretend für die Schülerinnen und Schüler fest, dass der Satz also nur im rechtwinkligen Dreieck gültig ist. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson die Umkehrformeln zum Satz des Pythagoras, für die sie in zwei einschrittigen Anwendungsbeispielen Verwendung finden. Von zwei gegebenen rechtwinkligen Dreiecken ist je eine Seite gesucht. Bei beiden Aufgaben wird zuerst das Vorgehen in der Klasse besprochen, dann rechnen die Schülerinnen und Schüler selbständig die fehlende Seite aus und schließlich wird die Aufgabe und deren Lösungsweg in der Klasse verglichen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A12-P-1119-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Lektion wird das in den letzten zwei Stunden angeeignete Wissen wiederholt. Dazwischen wird erläutert, warum die längste Seite immer gegenüber dem rechten Winkel liege...    mehr

    Zu Beginn dieser Lektion wird das in den letzten zwei Stunden angeeignete Wissen wiederholt. Dazwischen wird erläutert, warum die längste Seite immer gegenüber dem rechten Winkel liegen muss. Danach korrigiert die Klasse die Hausaufgaben. Die Lösungswege und Ergebnisse werden dabei besprochen. Dazwischen zeigt die Lehrperson der Klasse Beispiele von pythagoräischen Zahlentrippeln. Danach werden die Lösungen der Hausaufgaben zusätzlich im Bezug auf Zahlentrippel überprüft. Nach dieser öffentlichen Phase gibt die Lehrperson der Klasse den Auftrag, sich mit der Anwendung des Satzes von Pythagoras im gleichschenkligen Dreieck zu beschäftigen. Dazu wird ein gleichschenkliges Dreieck mit seiner Basishöhe von der Lehrperson an die Wandtafel gezeichnet. Gemeinsam wird das weitere Vorgehen öffentlich besprochen. Nun arbeiten die Schülerinnen und Schüler alleine, indem sie im gleichschenkligen Dreieck alle drei Höhen der Seiten und die Fläche des Dreicks berechnen. Die Aufgabe ist anspruchsvoll aufgrund ihrer Mehrschrittigkeit, obwohl das Vorgehen zuvor gemeinsam besprochen wurde. Die Schülerarbeitsphase dauert bis zur Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (B01-P-2101-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler...    mehr

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler spontan. Ausgehend von der Frage wie „draußen auf dem Feld“ im rechten Winkel gebaut werden könne, zeigt die Lehrperson, dass mit einer Schnur ein rechtwinkliges Dreieck entsteht, wenn die Längen der drei Schnurabschnitte im Verhältnis drei, vier und fünf zueinander stehen. Danach fordert die Lehrperson die Schüler und Schülerinnen auf, in Gruppen zu diskutieren und herauszufinden wie die Zahlen der pythagoräischen Zahlentripeln mathematisch zusammenhängen. Dazu wird ein Blatt mit verschiedenen Zahlentripeln abgegeben. An einem Gruppentisch ist der Satz des Pythagoras bereits bekannt. Diese Schülerinnen und Schüler werden nun auf die anderen Gruppen verteilt, um so ihr Wissen an den Rest der Klasse weiterzugeben. Um die Aussagen der Schülerinnen und Schüler zu bestätigen, stellt die Lehrperson den Satz des Pythagoras an der Wandtafel mit einem roten Hypotenusen- und grünen Kathetenquadraten graphisch dar. Danach berechnen die Schülerinnen und Schüler mit dem neu gelernten Satz selbständig die fehlenden Seiten von verschiedenen rechtwinkligen Dreiecken, ohne dass die Lehrperson vorgezeigt hat, wie solche Aufgaben zu lösen sind. Nachdem die Schülerinnen und Schüler Gelegenheit hatten, ihre Resultate zu korrigieren, erhalten sie ein Blatt, auf dem sie die Pythagorasfigur entsprechend der Wandtafeldarstellung anmalen und in ihr Theorieheft einkleben. Danach werden in Stillarbeit weitere Dreiecksseiten berechnet und kontrolliert. Um die Lektion abzurunden, wiederholt die Lehrperson vor der Pause das in dieser Lektion Gelernte. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B03-P-2103-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der dritten Lektion tragen die Lernenden, im Sinne einer Aktivierung des Vorwissens, das neu erworbene mathematische Wissen vom Vortag nochmals zusammen. Danach erkundigt...    mehr

    Zu Beginn der dritten Lektion tragen die Lernenden, im Sinne einer Aktivierung des Vorwissens, das neu erworbene mathematische Wissen vom Vortag nochmals zusammen. Danach erkundigt sich die Lehrperson, ob alle Schülerinnen und Schüler das Puzzle für den Zerlegungsbeweis zu Hause fertig einkleben konnten und erläutert diesen nochmals ganz kurz. Darauf gibt sie das Thema der Stunde bekannt. Sie möchte mit etwas Theoretischem einsteigen und dann an den Aufgaben auf dem Übungsblatt weiterarbeiten. Mit der Frage „Wie lautet die Umkehrung des Satzes von Pythagoras?“ , startet die Lehrperson in den Theorieteil. In einem fragend-entwickelnden Lehr-Lerngespräch entwickelt sie zusammen mit den Lernenden den Beweis der Umkehrung, wenn a2+b2=c2, dann muss Gamma neunzig Grad sein. Die Lehrperson notiert und zeichnet fortlaufend die neu erworbenen Kenntnisse an die Wandtafel. Nach der Beweisführung verteilt die Lehrperson ein Theorieblatt. Während die Lehrperson die Blätter verteilt, nehmen die Schülerinnen und Schüler ihre Übungsblätter mit den Hausaufgaben hervor, die nun im Klassenverband besprochen werden. Für die Konstruktionsaufgabe werden zwei unterschiedliche Lösungswege aufgezeigt. Bei der Aufgabe mit dem Rhombus verweist die Lehrperson nochmals ausdrücklich, dass sich die Schülerinnen und Schüler jeweils gut überlegen sollen, wo sich im Dreieck die längste Seite befindet, beziehungsweise, wo der rechte Winkel liegt, dass die Bezeichnung der Seite nicht wesentlich ist und ändern kann. Bevor die letzte Aufgabe der Hausaufgaben besprochen wird, erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schüler die Prozedur dreier anspruchsvoller Aufgaben ohne Zahlen. Es handelt sich dabei um die Berechnung der Diagonale im Quadrat, der Höhe im gleichseitigen Dreieck und der Diagonale im Würfel. Nachdem die Schülerinnen und Schüler noch die Resultate der letzten Hausaufgabe gelesen und verglichen haben, verweist die Lehrperson auf die Bemerkung am Schluss der Aufgabenstellung: Handelt es sich um ein rechtwinkliges Dreieck und können die Seitenlängen durch ganze Zahlen ausgedrückt werden, handelt es sich um Pythagoräische Zahlentripel. Die Lehrperson stellt anhand einer Aufgabe den Diophantischen Algorithmus vor. Dabei handelt es sich um eine Methode, wie man Pythagoräische Zahlentripel finden kann. Gemeinsam machen sie zwei Durchläufe. Daraufhin sollte jeder Lernende selbständig drei weitere Tripel, im Sinne einer Übung, finden. Die Lehrperson beschließt die Stunde, indem sie den Schülerinnen und Schüler die drei Durchläufe als Aufgaben mit nach Hause gibt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B04-P-2104-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Hinweisen. Die Lehrperson gibt wenige Angaben zum Leben des Pythagoras und kommt so schnell auf dessen mathematische Tätigkeit und a...    mehr

    Die Lektion beginnt mit einigen organisatorischen Hinweisen. Die Lehrperson gibt wenige Angaben zum Leben des Pythagoras und kommt so schnell auf dessen mathematische Tätigkeit und auf den Satz des Pythagoras zu sprechen: Zuerst legt sie die Beschriftung im rechtwinkligen Dreieck fest und formuliert anschließend den Satz des Pythagoras, welchen sie dann auch gleich mit dem Ergänzungsbeweis beweist. Anschließend übernehmen die Schülerinnen und Schüler den Satz und seinen Beweis in ihr Theorieheft. Wie sie damit fertig sind, nimmt die Lehrperson das Lehr-Lern-Gespräch wieder auf: Die Schülerinnen und Schüler benennen die Katheten und Hypotenusen in verschiedenen Dreiecken. Danach werden unter der Leitung der Lehrperson die fehlenden Seiten von sechs Dreiecken berechnet. Weil dabei pythagoräische Zahlentripel als Lösung entstehen, verweist die Lehrperson auf die Primfaktorenzerlegung, die dann bei den folgenden Beispielen auch angewendet wird. Anschließend werden verschiedene Zahlentripel gebildet, ausgerechnet und gesucht. Vor dem Ende der Lektion werden dann noch zwei weitere Dreiecke berechnet. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B06-P-2106-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreibe...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreiben und die aufgeschriebenen Aufträge dann auch ausführen: Sie sollen sechs Quadrate, die die Seitenlängen von zwei pythagoräischen Zahlentripeln aufweisen, ausschneiden, die zusammengehörenden zu Pythagorasfiguren zusammenlegen und ihre Beobachtungen dazu schriftlich festhalten. Während die Schülerinnen und Schüler die Aufträge zur Exploration des Satzes von Pythagoras der Reihe nach ausführen, erklärt die Lehrperson, was mit „zu einem Dreieck zusammenlegen“ gemeint ist, eben die Pythagorasfigur legen. Schließlich geht die Lehrperson den Aufgabenkatalog Punkt für Punkt durch, die Schüler geben ihre Beobachtungen an die Klasse weiter. Da der Satz des Pythagoras bei einigen Schülern schon bekannt ist, kommt dieser als Beobachtung bald zur Sprache. An dieser Stelle erklärt die Lehrperson, was der Satz des Pythagoras ist. Danach wird ein weiterer Punkt aus dem Katalog besprochen, was die Lehrperson dazu verleitet, der Klasse etwas über den Mathematiker und Philosophen Pythagoras aus dem Lexikon vorzulesen. Schließlich wird der letzte Punkt besprochen: Weitere Dreiecke suchen, von denen die Summe zweier Seitenquadrate das Quadrat der dritten ergibt. Danach sollen die Schüler selbständig einen Eintrag in ihr Theorieheft machen. Bevor der Film zu Ende ist, beginnt die Lehrperson den Beweis an Hand des Kathetensatzes vorzuzeigen. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation