Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: SCHWEIZ (Filter: Ort der Aufzeichnung)
"SCHUELERARBEIT (PARTNERARBEIT)" (Filter: Sozialform)
EINFUEHRUNG (Filter: Schlagwörter)

Anzahl der Treffer: 7
Filtern nach:
     1     
  • Satzgruppe des Pythagoras (B10-P-2110-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand einer Zahlentripelaufgabe den Satz des Pythagoras. Die Schüler(innen) versuchen in Partnerarbeit mit drei Schnüren mit vorgegebener Länge ein rechtwinkliges Dreieck auszulegen und tragen ihre Ergebnisse an der Wandtafel ein. Angeleitete Stillarbeitsphasen und öffentliche Kontrollphasen bez. Erarbeitungsphasen wechseln sich ab. Anschließend erarbeitet die Lehrperson gemeinsam mit den Schüler(innen) an der Wandtafel einen Hefteintrag, in welchem der Satz grafisch dargestellt wir. Die Schüler(innen) übernehmen die Wandtafelanschrift in ihr Heft. Danach erfolgt eine kurze Repetition der Seitenbezeichnungen im rechtwinkligen Dreieck. Darauf hält die Lehrperson die erarbeitete Formel an der Wandtafel fest und formuliert den Merksatz in Worten aus, die Schüler(innen) schreiben mit. Bevor die Lehrperson die Schüler(innen) in die Pause entlässt, gibt sie einen Ausblick darauf, was sie nach der kurzen Pause im zweiten Teil der Doppelstunde machen werden. Die Lektion endet mit organisatorischen Hinweisen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B12-P-2112-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuc...    mehr

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuches und durch offene Fragen) bekannt. Danach zeigt die Lehrperson Bilder von Pythagoras am Hellraumprojektor und erzählt ausführlich von der Person des Pythagoras, von dessen Geschichte und Leistungen. Darauf schreibt die Lehrperson die Formel a2+b2=c2 an die Wandtafel mit dem Hinweis, dass die Schülerinnen und Schülern diese Formel so erforschen werden, damit sie sie dann einer anderen Person erklären können. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, gibt die Lehrperson den weiteren Ablauf der Stunde und das Ziel bekannt. Zur Erforschung des Satzes von Pythagoras arbeiten die Schülerinnen und Schüler zu zweit im Karusellprinzip an drei verschiedenen Aufträgen. Nach einigen Minuten wird die Partnerarbeit von der Lehrperson unterbrochen. Einzelne Schülerinnen und Schüler teilen der ganzen Klasse die bereits gemachten Gedanken und die ersten Erkenntnisse mit. Dies soll die anderen Schülerinnen und Schülern bei der Bearbeitung der noch nicht bearbeiteten Aufträge unterstützen. Nun wechseln die Lernenden ihre Plätze, um in Partnerarbeit einen neuen Auftrag zu bearbeiten und zu forschen. Nach etwa 10 Minuten neuerlicher Partnerarbeit bricht der Film ab. Auftrag 1: Bei der einen Aufgabenstellung handelt es sich um die grafische Darstellung des Ergänzungsbeweises. Die Fläche a2 und b2 und vier rechtwinklige Dreiecke (Quadrat) sind dabei gleich groß wie c2 und vier rechtwinklige Dreiecke (Quadrat). Dabei soll gezeigt werden, dass a2+b2=c2 (indem die vier gleich großen, rechtwinkligen Dreiecke von den Quadraten je abgezählt werden). Dabei handelt es sich um de Ergänzungsbeweis. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 2: Bei der zweiten Aufgabenstellung erhalten die Schülerinnen und Schüler mehrere Blätter. Die Grundlage der Aufgabenstellung bildet die Abbildung eines Parketts, das aus verschiedenen Rechtecken und drei verschieden großen Quadraten besteht. Nun sollen die Schülerinnen und Schüler das kleine Quadrat in zwei, das mittlere in drei Vielecke aufteilen und alle Vielecke sollen zu einem neuen Quadrat zusammengefügt werden, das auf das Parkettmuster passt. Bei dieser Aufgabenstellung handelt es sich um einen Zerlegungsbeweis des Satzes von Pythagoras. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 3: Bei der dritten Aufgabenstellung handelt es sich um das Nachvollziehen der Technik, anhand der die Ägypter rechte Winkel konstruierten. Rechte Winkel konstruierten die Ägypter mit Hilfe von zusammengeknoteten Seilstücken, die sie in zwölf gleich große Abschnitte einteilten. Dabei ist der Bezug zu den Seitenverhältnissen (3:4:5/ Zahlentripel) eines rechtwinkligen Dreiecks ausschlaggebend. Auch hier werden die Schülerinnen und Schüler aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag und der Vorgehensweise der Ägypter in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B13-P-2113-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nenne...    mehr

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nennen die Schülerinnen und Schüler den Kreis, die Mittelsenkrechte, die Mittelparalelle, den Thaleskreis und die Winkelhalbierende als geometrische Orte. Darauf erteilt die Lehrperson den Schülerinnen und Schülern einen Auftrag, bei dem sie ein rechtwinkliges Dreieck zeichnen sollen, indem sie den Thaleskreis über der Seite c konstruieren. Danach sollen sie die Seiten a, b und über den drei Seiten die entsprechenden Flächenquadrate zeichnen. Da der Auftrag auf Häuschenpapier gezeichnet wird, sollen die Schülerinnen und Schüler danach die Häuschen der einzelnen Flächenquadrate zählen und miteinander vergleichen. Schlussfolgerungen sollen dabei an der Tafel notiert werden. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, werden in einem entwickelnden Lehr- und Lerngespräch die Seitenbezeichnungen (Hypotenuse und Katheten) in einem rechtwinkligen Dreieck erarbeitet. Danach arbeiten die Schülerinnen und Schüler zu zweit an dem zuvor erteilten Auftrag. Bei der Auswertung erklärt ein Schüler am Hellraumprojektor, wie er die Flächen berechnet hat. Eine Schülerin präsentiert die Schlussfolgerung, dass die Summe der Flächenquadrate über den Katheten gleich groß ist, wie das Flächenquadrat über der Hypotenuse. Während der Stillarbeitsphase wurden von den Schülerinnen und Schülern die Formel a2 + b2 = c2 und deren Ableitungen an der Wandtafel notiert. Nun überprüft die Klasse die Formel a2 + b2 = c2 mit dem Taschenrechner und befindet sie als richtig. Mit der Unterstützung der Lehrperson und der Gleichungslehre, werden auch die Umkehrungen der Formel als richtig anerkannt. Zum Schluss der Lektion gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B15-P-2115-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Besprechungen. Die Lehrperson gibt dann das Thema der Lektion bekannt, was sie dazu veranlasst, etwas über Pythagoras und seinen S...    mehr

    Die Lektion beginnt mit einigen organisatorischen Besprechungen. Die Lehrperson gibt dann das Thema der Lektion bekannt, was sie dazu veranlasst, etwas über Pythagoras und seinen Satz zu erzählen, und dass dieses Prinzip den Ägyptern schon lange vor Pythagoras bekannt war. Mit einer vorbereiteten Schnur zeigt die Lehrperson den Schülerinnen und Schülern, wie die Ägypter rechte Winkel bilden konnten. Wegen Unklarheiten seitens der Schülerinnen und Schüler versammelt sich die Klasse auf Geheiß der Lehrperson um einen Schülerpult, wo mit Hilfe mehrerer Hände das Dreieck noch einmal gebildet und der rechte Winkel als solcher bestimmt wird. An diesem Dreieck werden die Begriffe Katheten und Hypotenuse repetiert. Die Seitenlängen des entstandenen Dreiecks verhalten sich 3:4:5. Im Lehrgespräch bringt die Lehrperson den Schülerinnen und Schülern nahe, dass immer ein rechtwinkliges Dreieck entsteht, wenn die drei Seiten in diesem Verhältnis zueinander stehen. Danach schneiden sich die Schülerinnen und Schüler zu zweit ein beliebig langes Stück Schnur ab, das sie zusammenknüpfen, auf ihrem Pult zu einem rechtwinkligen Dreieck spannen, dessen Seiten messen und diese Längen an der Wandtafel in eine Tabelle eintragen. Schnellere Schülergruppen spannen und vermessen noch ein zweites rechtwinkliges Dreieck. Wie die Tabelle gefüllt ist, führt die Lehrperson den Begriff Zahlentripel ein und verteilt ein Blatt, auf dem die Schülerinnen und Schüler viele ganzzahlige pythagoräische Zahlentripel finden. An Hand dieser Liste und den Zahlentripeln an der Wandtafel sollen die Schülerinnen und Schüler nun selbständig in zweier Gruppen deren mathematischen Zusammenhang explorativ heraus finden und ihre Entdeckungen der Lehrperson kund tun. Da nach kurzer Zeit schon viele im Ansatz richtige Antworten bei der Lehrperson eingetroffen sind, lässt die Lehrperson die Schülerinnen und Schüler ihre Lösungsvorschläge an die Klasse weiter geben. Daraus entwickelt sich eine Diskussion darüber, dass bei den entdeckten Formeln die Operationszeichen nicht beliebig gesetzt werden können, sondern dass die Flächen der Seitenquadrate zum Berechnen der Hypotenuse plus, zum Berechnen einer Kathete minus gerechnet werden müssen. Wie sich Schülerinnen und Schüler unterstützt durch die Lehrperson gegenseitig von der korrekten Vorgehensweise überzeugt haben, gibt die Lehrperson die Hausaufgaben, die auch eine schriftliche Repetition dieser Lektion beinhalten, bekannt und schließt so die Lektion ab. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B16-P-2201-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach einigen organisatorischen Belangen und Klärung von Terminen gibt die Lehrperson bekannt was heute und am nächsten Tag auf dem Programm steht. Sie besprechen den Arbeitsplan und de...    mehr

    Nach einigen organisatorischen Belangen und Klärung von Terminen gibt die Lehrperson bekannt was heute und am nächsten Tag auf dem Programm steht. Sie besprechen den Arbeitsplan und dessen Ablauf. Danach startet die Lehrperson mit einer Aufgabe vom Arbeitsplan. Anhand dieser Parkett-Aufgabe wollen sie gemeinsam Schritt für Schritt den Satz von Pythagoras problemorientiert entwickeln. Die auf einem Arbeitsblatt dargestellten Schritte der Verwandlung eines Quadrates zu einem Parkettteilstück werden von den Schülerinnen und Schülern handelnd nachvollzogen. Als Kontrolle legen die Schülerinnen und Schüler gemeinsam mit der Lehrperson noch einmal die Parkettbildung (Umwandlung von Quadrat zu neuer Figur). Danach beschriften sie in der Klasse die Teilstücke, um zu begründen, wieso die neue Figur aus zwei Quadraten besteht. Sie entwickeln gemeinsam, dass diese zusammen gleich groß sind wie das ursprüngliche Quadrat, dass a2 + b2 = c2 ist. Anschließend liest jede Schülerin und jeder Schüler im Buch die Theorie zum Satz von Pythagoras. Bevor die Lehrperson zusammen mit den Lernenden eine einfache Berechnungsaufgabe, in der die beiden Katheten gegeben sind, löst, klären sie noch, wie die Seiten in einem rechtwinkligen Dreieck benannt werden. Nach der ersten Berechnungsaufgabe notieren die Lernenden die Formel zur Berechnung der Hypotenuse auf ihrem Theorieblock. Danach lösen sie zu zweit eine nächste ähnliche Berechnungsaufgabe, in der eine der Katheten und die Hypotenuse gegeben sind. Auch diesmal müssen die Schülerinnen und Schüler, nachdem die Lehrperson mit ihnen die Aufgabe besprochen und einen Lösungsweg aufgezeigt hat, auf ihrem Theorieblock einen Eintrag machen. Diesmal erweitern sie ihre Unterlagen mit der Formel zur Berechnung einer Kathete. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B17-P-2202-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Pythagorasreihe begrüßt die Lehrperson die Klasse und stellt das Filmteam vor. Dann werden die Pulte verschoben. Danach korrigiert die Klasse die Hausaufgaben am He...    mehr

    Zu Beginn dieser Pythagorasreihe begrüßt die Lehrperson die Klasse und stellt das Filmteam vor. Dann werden die Pulte verschoben. Danach korrigiert die Klasse die Hausaufgaben am Hellraumprojektor und die Lehrperson zeigt einen Lösungsweg zu den Hausaufgaben an diesem auf. Darauf zeichnet die Lehrperson ein Haus an die Wandtafel. Das ist der Beginn einer problemorientierten Aufgabenstellung. An der Hauswand wird eine Leiter angestellt. Die Frage ist nun wie lange die Leiter sein muss, wenn die Höhe der Hauswand und der Abstand von der Leiter zur Hauswand bekannt ist. Die Lehrperson fordert die Schülerinnen und Schüler auf, die Masse zu schätzen. Die Schülerinnen und Schüler arbeiten zu zweit selbständig entdeckend. Nach einer kurzen Schülerarbeitsphase werden die Ergebnisse im öffentlichen Unterricht zusammengetragen. Dabei schreibt die Lehrperson vier Ergebnisse der Schülerinnen und Schüler an die Wandtafel und stellt danach Pythagoras und die Formel a2 + b2 = c2 vor. Dabei weist die Lehrperson die Schülerinnen und Schüler darauf hin, dass c immer die längste Seite ist und dass es sich bei der Anwendung des Satzes von Pythagoras immer um ein rechtwinkliges Dreieck handeln muss. Darauf bezeichnet sie die Seiten des an der Wandtafel vorgegebenen Dreiecks (Haushöhe, Abstand, Leiter) mit den entsprechenden Buchstaben und gibt den Schülerinnen und Schülern den Auftrag, die Seite c (Leiter) zu berechnen. Die Schülerinnen und Schüler arbeiten zu zweit. Die Aufgabe ist anspruchsvoll, da die Klasse c bisher noch nicht berechnet hat. Nach einer kurzen Schülerarbeitsphase nennt eine Schülerin das Ergebnis und die Lehrperson zeigt der Klasse den Lösungsweg vor. Darauf gibt die Lehrperson die Anweisung, die Zeichnung und die Anschrift der Wandtafel ins Übungsheft zu übernehmen. Während der Schülerarbeitsphase zeichnet die Lehrperson zwei weitere rechtwinklige Dreiecke an die Wandtafel und schreibt dazu jeweils die Maße der zwei kürzeren Seiten. Wer mit Abschreiben fertig ist, berechnet darauf die zwei fehlenden Seiten. Da die Schülerinnen und Schüler nun bereits wissen wie das geht, sind diese Aufgaben repetitiv, also einfach. Die Ergebnisse werden gemeinsam kontrolliert. Darauf leitet die Lehrperson über zur Beweisführung des Ergänzungsbeweises. Dieser wird in kleinen Schritten aufgebaut. Auf die Wandtafel ist die grafische Darstellung des Satzes von Pythagoras gezeichnet. Nun bezeichnet die Klasse zuerst den jeweiligen Flächeninhalt der entsprechenden Quadrate über den Seiten. Darauf weist die Lehrperson die Schülerinnen und Schüler an, die auf den Pulten bereitliegenden blauen und gelben Blätter zu nehmen und die darauf kopierten Figuren auszuschneiden, um sie nachher zur grafischen Darstellung des Satzes von Pythagoras zu ordnen. Die Schülerinnen und Schüler arbeiten dazu alleine. Darauf möchte die Lehrperson eine einfache Beweisführung mit der Klasse entwickeln, wozu die Puzzleteile von Nöten wären. Da die Schülerinnen und Schüler aber keine Vorschläge bringen, leitet die Lehrperson die Schülerinnen und Schüler an, die Seiten ihrer Dreiecke zu messen und die Flächen mit dem Taschenrechner zu berechnen. Dazu arbeiten die Schülerinnen und Schüler alleine, selbständig entdeckend. Nach der Schülerarbeitsphase nennen die Schülerinnen und Schüler die Ergebnisse. Die Lehrperson äussert darauf, dass a2 + b2 = c2 nicht nur rechnerisch, sondern auch geometrisch überprüft werden kann. Die Schülerinnen und Schüler sollen darauf a2, b2 so zerschneiden, das sie c2 bilden. Die Schülerinnen und Schüler arbeiten dazu zu zweit selbständig entdeckend. Während der Schülerarbeitsphase geht die Lehrperson herum und kontrolliert die Resultate. Mit der Bemerkung, dass es hier viele Lösungen gibt, die alle richtig sind, leitet die Lehrperson zur nächsten Aufgabenstellung über. Dabei sollen die Schülerinnen und Schüler mit ihren farbigen Formen am Platz die Darstellung des Ergänzungsbeweises von der Wandtafel übernehmen und je eine Figur ( a2, b2 und vier rechtwinklige, kongruente Dreiecke oder c2 und vier rechtwinklige, kongruente Dreiecke) darstellen. Dazu arbeiten die Schülerinnen und Schüler alleine explorierend und die Lehrperson kontrolliert das Gelegte fortlaufend. Danach werden die Darstellungen des Ergänzungsbeweises mit den Buchstaben richtig beschriftet und die Lehrperson gibt der Klasse den Auftrag, die jeweiligen Flächen ihrer Darstellung zu berechnen. (Als Grundlage dazu dient die Bezeichnung mit Buchstaben). Danach gongt es in die Pause. Nach der Pause wird an der Beweisführung weiter gearbeitet. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B19-P-2204-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran...    mehr

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran: Wie hoch und/ oder breit darf ein am Boden zusammengebauter IKEA-Schrank sein, damit er in einem 223 cm hohen Zimmer aufgestellt werden kann. In Zweiergruppen überlegen sich die Schülerinnen und Schüler mit welchen der vorgegebenen Schränke das möglich ist. Nach einigen Minuten sammelt die Lehrperson die Meinungen der Schülerinnen und Schüler und hält sie auf einer Planskizze fest. Die Meinungen gehen weit auseinander. Nun haben die Schülerinnen und Schüler zwei Möglichkeiten wie sie weiterarbeiten wollen: Die einen schneiden die Planteile der Schränke aus, die andern suchen nach einer allgemeingültigen Formel und versuchen so explorativ herauszufinden, welcher der verschiedenen Schränke denn nun aufgestellt werden kann und welcher nicht und woran es liegen könnte, dass ein Schrank aufgestellt werden kann oder nicht. Im Plenum äußern sich die Schüler über ihre Erkenntnisse: Entscheidend ist die Diagonale. Die Lehrperson abstrahiert das Problem auf ein rechtwinkliges Dreieck, von dem man die Hypotenuse nicht kennt. Ein Schüler kennt den Satz des Pythagoras und nennt ihn als Lösungsvorschlag. Die Lehrperson stellt den Satz an der Wandtafel geometrisch dar und der Schüler rechnet vor, wie die Diagonale eines Schrankes mit dem Satz zu bestimmen ist. Danach fordert die Lehrperson die Schülerinnen und Schüler auf, die Diagonalen der anderen Schränke zu berechnen und so endlich zu bestimmen, welcher nun aufgestellt werden könne. Da sich nun alle einig sind, welcher Schrank in das Zimmer passt, übernehmen die Schülerinnen und Schüler die geometrischen Ausführungen in ihr Theorieheft. Dazu soll jeder für sich den Satz des Pythagoras in eigenen Worten formulieren. (Projekt)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation