DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: SCHWEIZ (Filter: Ort der Aufzeichnung)
"SCHUELERARBEIT (PARTNERARBEIT)" (Filter: Sozialform)
LOESUNGSSTRATEGIE (Filter: Schlagwörter)

Anzahl der Treffer: 13
  • Satzgruppe des Pythagoras (B11-P-2111-Lek3)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Informationen. Anschliessend werden zwei Übungsaufgaben in der Klasse gelöst. Die erste ist noch eine einschrittige Seitenberechnun...    mehr

    Die Lektion beginnt mit einigen organisatorischen Informationen. Anschliessend werden zwei Übungsaufgaben in der Klasse gelöst. Die erste ist noch eine einschrittige Seitenberechnung, bei der zweiten soll in einem gleichschenkligen Dreieck die Basishöhe bei gegebener Schenkel- und Basislänge berechnet werden. Dann liest die Lehrperson aus dem Leben von Pythagoras vor. Anschliessend rechnen die Schülerinnen und Schüler an den nun teilweise komplexeren Übungsaufgaben weiter. In der letzten Viertelstunde wird eine Lernkontrolle ausgefüllt und korrigiert. (Projekt)     weniger

  • Satzgruppe des Pythagoras (B12-P-2112-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuc...    mehr

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuches und durch offene Fragen) bekannt. Danach zeigt die Lehrperson Bilder von Pythagoras am Hellraumprojektor und erzählt ausführlich von der Person des Pythagoras, von dessen Geschichte und Leistungen. Darauf schreibt die Lehrperson die Formel a2+b2=c2 an die Wandtafel mit dem Hinweis, dass die Schülerinnen und Schülern diese Formel so erforschen werden, damit sie sie dann einer anderen Person erklären können. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, gibt die Lehrperson den weiteren Ablauf der Stunde und das Ziel bekannt. Zur Erforschung des Satzes von Pythagoras arbeiten die Schülerinnen und Schüler zu zweit im Karusellprinzip an drei verschiedenen Aufträgen. Nach einigen Minuten wird die Partnerarbeit von der Lehrperson unterbrochen. Einzelne Schülerinnen und Schüler teilen der ganzen Klasse die bereits gemachten Gedanken und die ersten Erkenntnisse mit. Dies soll die anderen Schülerinnen und Schülern bei der Bearbeitung der noch nicht bearbeiteten Aufträge unterstützen. Nun wechseln die Lernenden ihre Plätze, um in Partnerarbeit einen neuen Auftrag zu bearbeiten und zu forschen. Nach etwa 10 Minuten neuerlicher Partnerarbeit bricht der Film ab. Auftrag 1: Bei der einen Aufgabenstellung handelt es sich um die grafische Darstellung des Ergänzungsbeweises. Die Fläche a2 und b2 und vier rechtwinklige Dreiecke (Quadrat) sind dabei gleich groß wie c2 und vier rechtwinklige Dreiecke (Quadrat). Dabei soll gezeigt werden, dass a2+b2=c2 (indem die vier gleich großen, rechtwinkligen Dreiecke von den Quadraten je abgezählt werden). Dabei handelt es sich um de Ergänzungsbeweis. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 2: Bei der zweiten Aufgabenstellung erhalten die Schülerinnen und Schüler mehrere Blätter. Die Grundlage der Aufgabenstellung bildet die Abbildung eines Parketts, das aus verschiedenen Rechtecken und drei verschieden großen Quadraten besteht. Nun sollen die Schülerinnen und Schüler das kleine Quadrat in zwei, das mittlere in drei Vielecke aufteilen und alle Vielecke sollen zu einem neuen Quadrat zusammengefügt werden, das auf das Parkettmuster passt. Bei dieser Aufgabenstellung handelt es sich um einen Zerlegungsbeweis des Satzes von Pythagoras. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 3: Bei der dritten Aufgabenstellung handelt es sich um das Nachvollziehen der Technik, anhand der die Ägypter rechte Winkel konstruierten. Rechte Winkel konstruierten die Ägypter mit Hilfe von zusammengeknoteten Seilstücken, die sie in zwölf gleich große Abschnitte einteilten. Dabei ist der Bezug zu den Seitenverhältnissen (3:4:5/ Zahlentripel) eines rechtwinkligen Dreiecks ausschlaggebend. Auch hier werden die Schülerinnen und Schüler aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag und der Vorgehensweise der Ägypter in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B12-P-2112-Lek2)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse st...    mehr

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse statt. Neue Gedanken, Erkenntnisse und Lösungsversuche zu den einzelnen Aufträgen werden von einzelnen Schülerinnen und Schülern der Klasse mitgeteilt. Danach legen die Schülerinnen und Schüler ihre Arbeitsblätter an den dritten, von ihnen bisher unbearbeiteten Posten, den sie nach einer fünfminütigen Pause bearbeiten werden (im Video ist die Pause als Schnitt bei 00:14:47 erkennbar). Nach der Pause arbeiten die Schülerinnen und Schüler wiederum in Partnerarbeit selbständig entdeckend am dritten und letzten, von ihnen noch nicht bearbeiteten, Auftrag. Die Schülerinnen und Schüler formulieren danach in der Gruppe (zwei bis drei Partnerarbeitsgruppen zusammen) ihre Erkentnisse zur Aufgabe möglichst kurz und prägnant und bestimmen eine Schülerin/ einen Schüler, die/ der dies der ganzen Klasse am Hellraumprojektor vorträgt. Die Lehrperson gibt nun einen kurzen Überblick zum weiteren Stundenverlauf: Die Gruppen teilen ihre Überlegungen zu den drei Aufträgen vor der Klasse vor. Als erstes tragen zwei Schüler ihre Erkenntnisse zum Seiltrick der Ägypter vor und bestätigen dabei die Behauptung a2+b2=c2. Danach erzählt die Lehrperson kurz, wozu die Ägypter die Konstruktion des rechten Winkels benötigten. Darauf äußert sich ein Schüler am Hellraumprojektor zur Darstellung des Ergänzungsbeweises und rechnet vor, weshalb hier die Behauptung a2+b2=c2 stimmt. In der Folge werden die Erkenntnisse zum Parkett von zwei Schülerinnen geäußert. Sie bestätigen, dass das größte Quadrat gleich groß ist, wie die zwei kleineren zusammen. Zum Schluss der Doppellektion klärt die Lehrperson organisatorische Fragen bezüglich der nächsten Stunden und der Hausaufgaben. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B12-P-2112-Lek3)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lehrperson beginnt die dritte Stunde der Pythagorasreihe mit einem Ausblick auf die Lektion, wobei sie Ziele, Thema, Inhalte und Arbeitsformen bekannt gibt. Als Repetition und ...    mehr

    Die Lehrperson beginnt die dritte Stunde der Pythagorasreihe mit einem Ausblick auf die Lektion, wobei sie Ziele, Thema, Inhalte und Arbeitsformen bekannt gibt. Als Repetition und Aktivierung des Vorwissen bearbeiten die Schülerinnen und Schüler zwei Kleinaufträge, die am Hellraumprojektor notiert sind. Zum einen wird verlangt, dass die Schülerinnen und Schüler drei kurze Sätze zur Person des Pythagoras und zu seiner Geschichte schreiben, zum anderen sollen die Schülerinnen und Schüler die Erkenntnisse der letzten zwei Geometriestunden in drei Sätzen möglichst kurz und prägnant zusammen fassen. Die Lernenden arbeiten zu zweit. Die Resultate werden in der Klasse ausgetauscht. Danach legt die Lehrperson eine farbige Folie auf den Hellraumprojektor. Es ist die grafische Darstellung des Kathetensatzes (= Satz des Euklid). Die Klasse sammelt Beobachtungen und Ideen im Sinne eines Brainstormings. Darauf erklärt die Lehrperson der Klasse, dass Euklid den Satz des Pythagoras weiter entwickelt hat, indem er die Beweisführung des Kathetensatzes entwickelte. Diese Beweisführung zeigt und erklärt die Lehrperson der Klasse. Als nächstes gibt die Lehrperson den Schülerinnen und Schülern Hinweise und eine Anleitung wie sie die in der Folge zu bearbeitende Aufgaben darzustellen haben. Darauf verteilt sie ein Aufgabenblatt. Gemeinsam wird eine Aufgabe erarbeitet, bei der es um die Berechnung der Hypotenuse geht. Die Lehrperson schreibt die Aufgabenstellung auf die Folie des Hellraumprojektors. In Einzelarbeit berechnen darauf die Schülerinnen und Schüler die Aufgabe. Danach wird die Aufgabe gemeinsam besprochen. Die Lehrperson zeigt das schrittweise Vorgehen am Hellraumprojektor vor und die Schülerinnen und Schüler übernehmen die Darstellung in ihre Hefte. Zum Schluss de Stunde gibt die Lehrperson die Hausaufgaben auf und regelt die Sitzordnung für die nächste Stunde. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B13-P-2113-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nenne...    mehr

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nennen die Schülerinnen und Schüler den Kreis, die Mittelsenkrechte, die Mittelparalelle, den Thaleskreis und die Winkelhalbierende als geometrische Orte. Darauf erteilt die Lehrperson den Schülerinnen und Schülern einen Auftrag, bei dem sie ein rechtwinkliges Dreieck zeichnen sollen, indem sie den Thaleskreis über der Seite c konstruieren. Danach sollen sie die Seiten a, b und über den drei Seiten die entsprechenden Flächenquadrate zeichnen. Da der Auftrag auf Häuschenpapier gezeichnet wird, sollen die Schülerinnen und Schüler danach die Häuschen der einzelnen Flächenquadrate zählen und miteinander vergleichen. Schlussfolgerungen sollen dabei an der Tafel notiert werden. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, werden in einem entwickelnden Lehr- und Lerngespräch die Seitenbezeichnungen (Hypotenuse und Katheten) in einem rechtwinkligen Dreieck erarbeitet. Danach arbeiten die Schülerinnen und Schüler zu zweit an dem zuvor erteilten Auftrag. Bei der Auswertung erklärt ein Schüler am Hellraumprojektor, wie er die Flächen berechnet hat. Eine Schülerin präsentiert die Schlussfolgerung, dass die Summe der Flächenquadrate über den Katheten gleich groß ist, wie das Flächenquadrat über der Hypotenuse. Während der Stillarbeitsphase wurden von den Schülerinnen und Schülern die Formel a2 + b2 = c2 und deren Ableitungen an der Wandtafel notiert. Nun überprüft die Klasse die Formel a2 + b2 = c2 mit dem Taschenrechner und befindet sie als richtig. Mit der Unterstützung der Lehrperson und der Gleichungslehre, werden auch die Umkehrungen der Formel als richtig anerkannt. Zum Schluss der Lektion gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    weniger

  • Textaufgaben (B02-T-2102-Lek2)

    Bestandteil von: Videogestützte Unterrichtsstudie / Textaufgabenmodul

    Das Resultat der in der vorhergehenden Lektion begonnen Aufgabe wird zu Beginn der zweiten Lektion durch eine Schülerin mitgeteilt. Danach erarbeitet die Lehrperson gemeinsam mit d...    mehr

    Das Resultat der in der vorhergehenden Lektion begonnen Aufgabe wird zu Beginn der zweiten Lektion durch eine Schülerin mitgeteilt. Danach erarbeitet die Lehrperson gemeinsam mit der Klasse in einem fragend-entwickelnden Lehr-Lerngespräch die Prozedur einer Geometrie-Textaufgabe aus dem Mathematikbuch. Bei dieser Aufgabe muss der Umfang von verschieden großen Quadraten berechnet werden. Anschließend folgt die Geometrie-Textaufgabe, die die Schülerinnen und Schüler in Partnerarbeit selbstständig lösen müssen. Die Lehrperson unterbricht diese Schülerarbeitsphase und gibt den Lernenden einen Tipp zum Umfang des Zaunes. Danach lösen die Lernenden, mit unterstützender Hilfe der Lehrperson, die Aufgabe in Partnerarbeit fertig. Der Lösungsweg dieser Aufgabe wird gemeinsam in der Klasse kurz besprochen. Danach folgt die spezielle Aufgabe, die in einem fragend-entwickelnden Lehr-Lerngespräch als Prozedur an der Wandtafel erarbeitet wird. Anschließend erteilt die Lehrperson den neuen Auftrag: In Gruppen muss die Alters-Textaufgabe selbstständig gelöst werden. Diese Aufgabe erfordert neue Denkschritte von den Lernenden. Die Lehrperson unterbricht diese Schülerarbeitsphase und stellt gemeinsam mit den Schülerinnen und Schüler die Gleichung für dieser Aufgabe an der Wandtafel auf. Danach lösen die Lernenden die Gleichung auf. Der Lösungsweg wird nicht mehr besprochen. (Projekt)    weniger

  • Textaufgaben (B06-T-2106-Lek2)

    Bestandteil von: Videogestützte Unterrichtsstudie / Textaufgabenmodul

    Die Lehrperson eröffnet die zweite Stunde nach der Pause direkt mit der Speziellen Aufgabe. Die Lernenden arbeiten selbstständig daran. Im folgenden Lern-Lehrgespräch werden verschiede...    mehr

    Die Lehrperson eröffnet die zweite Stunde nach der Pause direkt mit der Speziellen Aufgabe. Die Lernenden arbeiten selbstständig daran. Im folgenden Lern-Lehrgespräch werden verschiedene Lösungswege aufgezeigt. Ein Schüler hat einen korrekten Lösungsweg herausgefunden. Die Lehrperson zeigt jedoch noch einen zweiten Lösungsweg an der Wandtafel auf. Danach lösen die Schülerinnen und Schüler zwei Geometrie-Textaufgaben in Partnerarbeit. Auch hier wieder leistet die Lehrperson keinerlei individuelle Hilfestellung. Im fragenden-entwickelnden Lern-Lehrgespräch wird der Lösungsweg inklusive Gleichung der ersten Aufgabe an der Wandtafel erarbeitet. Anschließend arbeiten die Zweiergruppen an der zweiten Aufgabe weiter. Die meisten Paare erreichen die Lösung dieser Aufgabe bis zum Ende der zweiten Lektion nicht. Die Aufgabe wird erst in einer späteren Lektion besprochen werden. (Projekt)    weniger

  • Textaufgaben (B09-T-2109-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Textaufgabenmodul

    Zu Beginn der ersten Doppelstunde gibt die Lehrperson das Ziel und den Ablauf bekannt: Lösen von Textaufgaben mit Angaben zu Lösungsschritten, in Einzelarbeit und in Partnerarbeit....    mehr

    Zu Beginn der ersten Doppelstunde gibt die Lehrperson das Ziel und den Ablauf bekannt: Lösen von Textaufgaben mit Angaben zu Lösungsschritten, in Einzelarbeit und in Partnerarbeit. Die Lehrperson gibt den Schülerinnen und Schülern ein Blatt mit der Alters-Textaufgabe und Fragen zu Arbeitsschritten, wie diese Aufgabe zu lösen ist. In Partnerarbeit beantworten die Lernenden die Fragen und versuchen dann anhand dieser, eine Gleichung aufzustellen. Die Lehrperson unterbricht die Schülerarbeitsphase, gibt Hinweise und stellt dann gemeinsam mit der Klasse an der Wandtafel die Gleichung für diese Aufgabe auf. Danach wird diese von den Lernenden in Einzelarbeit im Heft gelöst und der Lösungsweg wird kurz öffentlich besprochen. Für die zweite Aufgabe, die Geometrie-Textaufgabe, wählt die Lehrperson das gleiche Vorgehen wie für die Alters-Textaufgabe. Sie gibt den Lernenden ein Blatt mit der Aufgabenstellung und mit Fragen zu den Arbeitsschritten, wie diese Aufgabe zu lösen ist. In Partnerarbeit beantworten die Lernenden die Fragen und versuchen dann anhand dieser, eine Gleichung aufzustellen. Kurz vor Ende der ersten Doppelstunde unterbricht die Lehrperson die Schülerarbeitsphase und gibt Tipps zur Problemlösung. (Projekt)    weniger

  • Textaufgaben (B09-T-2109-Lek2)

    Bestandteil von: Videogestützte Unterrichtsstudie / Textaufgabenmodul

    Zu Beginn der zweiten Stunde fährt die Lehrperson mit dem Aufzeigen von Lösungsansätzen fort und stellt dann gemeinsam mit der Klasse an der Wandtafel die Gleichung für die Geometrie-T...    mehr

    Zu Beginn der zweiten Stunde fährt die Lehrperson mit dem Aufzeigen von Lösungsansätzen fort und stellt dann gemeinsam mit der Klasse an der Wandtafel die Gleichung für die Geometrie-Textaufgabe auf. Danach wird diese von den Schülerinnen und Schülern in Einzelarbeit im Heft gelöst und der Lösungsweg wird kurz öffentlich besprochen. Anschließend arbeiten die Lernenden zu zweit an der speziellen Aufgabe. Die mathematische Behauptung soll mit einer Gleichung begründet werden. Mit dem Aufzeigen des richtigen Lösungsweges durch die Lehrperson an der Wandtafel wird die Doppelstunde beendet. (Projekt)    weniger

  • Textaufgaben (B10-T-2110-Lek2)

    Bestandteil von: Videogestützte Unterrichtsstudie / Textaufgabenmodul

    Nach der Pause gibt die Lehrperson das Ziel der folgenden Gruppenarbeit bekannt: Jede Gruppe bearbeitet selbstständig eine von drei Geometrie-Textaufgaben und hält ihr Ergebnis auf ein...    mehr

    Nach der Pause gibt die Lehrperson das Ziel der folgenden Gruppenarbeit bekannt: Jede Gruppe bearbeitet selbstständig eine von drei Geometrie-Textaufgaben und hält ihr Ergebnis auf einer Hellraumprojektorfolie fest. Anschließend präsentiert eine Gruppe ihren Lösungsweg auf dem Hellraumprojektor der Klasse. Danach arbeiten die Schüler(innen) bis zum Schluss der Stunde zu zweit an der speziellen Aufgabe, die mathematische Behauptung soll mit einer Gleichung begründet werden. Es findet kein Austausch des Lösungsweges mehr statt. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation