Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: SCHWEIZ (Filter: Ort der Aufzeichnung)
"SCHUELERARBEIT (PARTNERARBEIT)" (Filter: Sozialform)
VERANSCHAULICHUNG (Filter: Schlagwörter)

Anzahl der Treffer: 5
     1     
  • Satzgruppe des Pythagoras (B10-P-2110-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand einer Zahlentripelaufgabe den Satz des Pythagoras. Die Schüler(innen) versuchen in Partnerarbeit mit drei Schnüren mit vorgegebener Länge ein rechtwinkliges Dreieck auszulegen und tragen ihre Ergebnisse an der Wandtafel ein. Angeleitete Stillarbeitsphasen und öffentliche Kontrollphasen bez. Erarbeitungsphasen wechseln sich ab. Anschließend erarbeitet die Lehrperson gemeinsam mit den Schüler(innen) an der Wandtafel einen Hefteintrag, in welchem der Satz grafisch dargestellt wir. Die Schüler(innen) übernehmen die Wandtafelanschrift in ihr Heft. Danach erfolgt eine kurze Repetition der Seitenbezeichnungen im rechtwinkligen Dreieck. Darauf hält die Lehrperson die erarbeitete Formel an der Wandtafel fest und formuliert den Merksatz in Worten aus, die Schüler(innen) schreiben mit. Bevor die Lehrperson die Schüler(innen) in die Pause entlässt, gibt sie einen Ausblick darauf, was sie nach der kurzen Pause im zweiten Teil der Doppelstunde machen werden. Die Lektion endet mit organisatorischen Hinweisen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B15-P-2115-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Besprechungen. Die Lehrperson gibt dann das Thema der Lektion bekannt, was sie dazu veranlasst, etwas über Pythagoras und seinen S...    mehr

    Die Lektion beginnt mit einigen organisatorischen Besprechungen. Die Lehrperson gibt dann das Thema der Lektion bekannt, was sie dazu veranlasst, etwas über Pythagoras und seinen Satz zu erzählen, und dass dieses Prinzip den Ägyptern schon lange vor Pythagoras bekannt war. Mit einer vorbereiteten Schnur zeigt die Lehrperson den Schülerinnen und Schülern, wie die Ägypter rechte Winkel bilden konnten. Wegen Unklarheiten seitens der Schülerinnen und Schüler versammelt sich die Klasse auf Geheiß der Lehrperson um einen Schülerpult, wo mit Hilfe mehrerer Hände das Dreieck noch einmal gebildet und der rechte Winkel als solcher bestimmt wird. An diesem Dreieck werden die Begriffe Katheten und Hypotenuse repetiert. Die Seitenlängen des entstandenen Dreiecks verhalten sich 3:4:5. Im Lehrgespräch bringt die Lehrperson den Schülerinnen und Schülern nahe, dass immer ein rechtwinkliges Dreieck entsteht, wenn die drei Seiten in diesem Verhältnis zueinander stehen. Danach schneiden sich die Schülerinnen und Schüler zu zweit ein beliebig langes Stück Schnur ab, das sie zusammenknüpfen, auf ihrem Pult zu einem rechtwinkligen Dreieck spannen, dessen Seiten messen und diese Längen an der Wandtafel in eine Tabelle eintragen. Schnellere Schülergruppen spannen und vermessen noch ein zweites rechtwinkliges Dreieck. Wie die Tabelle gefüllt ist, führt die Lehrperson den Begriff Zahlentripel ein und verteilt ein Blatt, auf dem die Schülerinnen und Schüler viele ganzzahlige pythagoräische Zahlentripel finden. An Hand dieser Liste und den Zahlentripeln an der Wandtafel sollen die Schülerinnen und Schüler nun selbständig in zweier Gruppen deren mathematischen Zusammenhang explorativ heraus finden und ihre Entdeckungen der Lehrperson kund tun. Da nach kurzer Zeit schon viele im Ansatz richtige Antworten bei der Lehrperson eingetroffen sind, lässt die Lehrperson die Schülerinnen und Schüler ihre Lösungsvorschläge an die Klasse weiter geben. Daraus entwickelt sich eine Diskussion darüber, dass bei den entdeckten Formeln die Operationszeichen nicht beliebig gesetzt werden können, sondern dass die Flächen der Seitenquadrate zum Berechnen der Hypotenuse plus, zum Berechnen einer Kathete minus gerechnet werden müssen. Wie sich Schülerinnen und Schüler unterstützt durch die Lehrperson gegenseitig von der korrekten Vorgehensweise überzeugt haben, gibt die Lehrperson die Hausaufgaben, die auch eine schriftliche Repetition dieser Lektion beinhalten, bekannt und schließt so die Lektion ab. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B17-P-2202-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Pythagorasreihe begrüßt die Lehrperson die Klasse und stellt das Filmteam vor. Dann werden die Pulte verschoben. Danach korrigiert die Klasse die Hausaufgaben am He...    mehr

    Zu Beginn dieser Pythagorasreihe begrüßt die Lehrperson die Klasse und stellt das Filmteam vor. Dann werden die Pulte verschoben. Danach korrigiert die Klasse die Hausaufgaben am Hellraumprojektor und die Lehrperson zeigt einen Lösungsweg zu den Hausaufgaben an diesem auf. Darauf zeichnet die Lehrperson ein Haus an die Wandtafel. Das ist der Beginn einer problemorientierten Aufgabenstellung. An der Hauswand wird eine Leiter angestellt. Die Frage ist nun wie lange die Leiter sein muss, wenn die Höhe der Hauswand und der Abstand von der Leiter zur Hauswand bekannt ist. Die Lehrperson fordert die Schülerinnen und Schüler auf, die Masse zu schätzen. Die Schülerinnen und Schüler arbeiten zu zweit selbständig entdeckend. Nach einer kurzen Schülerarbeitsphase werden die Ergebnisse im öffentlichen Unterricht zusammengetragen. Dabei schreibt die Lehrperson vier Ergebnisse der Schülerinnen und Schüler an die Wandtafel und stellt danach Pythagoras und die Formel a2 + b2 = c2 vor. Dabei weist die Lehrperson die Schülerinnen und Schüler darauf hin, dass c immer die längste Seite ist und dass es sich bei der Anwendung des Satzes von Pythagoras immer um ein rechtwinkliges Dreieck handeln muss. Darauf bezeichnet sie die Seiten des an der Wandtafel vorgegebenen Dreiecks (Haushöhe, Abstand, Leiter) mit den entsprechenden Buchstaben und gibt den Schülerinnen und Schülern den Auftrag, die Seite c (Leiter) zu berechnen. Die Schülerinnen und Schüler arbeiten zu zweit. Die Aufgabe ist anspruchsvoll, da die Klasse c bisher noch nicht berechnet hat. Nach einer kurzen Schülerarbeitsphase nennt eine Schülerin das Ergebnis und die Lehrperson zeigt der Klasse den Lösungsweg vor. Darauf gibt die Lehrperson die Anweisung, die Zeichnung und die Anschrift der Wandtafel ins Übungsheft zu übernehmen. Während der Schülerarbeitsphase zeichnet die Lehrperson zwei weitere rechtwinklige Dreiecke an die Wandtafel und schreibt dazu jeweils die Maße der zwei kürzeren Seiten. Wer mit Abschreiben fertig ist, berechnet darauf die zwei fehlenden Seiten. Da die Schülerinnen und Schüler nun bereits wissen wie das geht, sind diese Aufgaben repetitiv, also einfach. Die Ergebnisse werden gemeinsam kontrolliert. Darauf leitet die Lehrperson über zur Beweisführung des Ergänzungsbeweises. Dieser wird in kleinen Schritten aufgebaut. Auf die Wandtafel ist die grafische Darstellung des Satzes von Pythagoras gezeichnet. Nun bezeichnet die Klasse zuerst den jeweiligen Flächeninhalt der entsprechenden Quadrate über den Seiten. Darauf weist die Lehrperson die Schülerinnen und Schüler an, die auf den Pulten bereitliegenden blauen und gelben Blätter zu nehmen und die darauf kopierten Figuren auszuschneiden, um sie nachher zur grafischen Darstellung des Satzes von Pythagoras zu ordnen. Die Schülerinnen und Schüler arbeiten dazu alleine. Darauf möchte die Lehrperson eine einfache Beweisführung mit der Klasse entwickeln, wozu die Puzzleteile von Nöten wären. Da die Schülerinnen und Schüler aber keine Vorschläge bringen, leitet die Lehrperson die Schülerinnen und Schüler an, die Seiten ihrer Dreiecke zu messen und die Flächen mit dem Taschenrechner zu berechnen. Dazu arbeiten die Schülerinnen und Schüler alleine, selbständig entdeckend. Nach der Schülerarbeitsphase nennen die Schülerinnen und Schüler die Ergebnisse. Die Lehrperson äussert darauf, dass a2 + b2 = c2 nicht nur rechnerisch, sondern auch geometrisch überprüft werden kann. Die Schülerinnen und Schüler sollen darauf a2, b2 so zerschneiden, das sie c2 bilden. Die Schülerinnen und Schüler arbeiten dazu zu zweit selbständig entdeckend. Während der Schülerarbeitsphase geht die Lehrperson herum und kontrolliert die Resultate. Mit der Bemerkung, dass es hier viele Lösungen gibt, die alle richtig sind, leitet die Lehrperson zur nächsten Aufgabenstellung über. Dabei sollen die Schülerinnen und Schüler mit ihren farbigen Formen am Platz die Darstellung des Ergänzungsbeweises von der Wandtafel übernehmen und je eine Figur ( a2, b2 und vier rechtwinklige, kongruente Dreiecke oder c2 und vier rechtwinklige, kongruente Dreiecke) darstellen. Dazu arbeiten die Schülerinnen und Schüler alleine explorierend und die Lehrperson kontrolliert das Gelegte fortlaufend. Danach werden die Darstellungen des Ergänzungsbeweises mit den Buchstaben richtig beschriftet und die Lehrperson gibt der Klasse den Auftrag, die jeweiligen Flächen ihrer Darstellung zu berechnen. (Als Grundlage dazu dient die Bezeichnung mit Buchstaben). Danach gongt es in die Pause. Nach der Pause wird an der Beweisführung weiter gearbeitet. (Projekt)    weniger

  • Textaufgaben (B12-T-2112-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Textaufgabenmodul

    Die erste Lektion der Doppelstunde beginnt mit Organisatorischem und mit der Bekanntgabe eines detaillierten Ablaufs über beide Lektionen und des Ziels: Die Textaufgaben sollen anh...    mehr

    Die erste Lektion der Doppelstunde beginnt mit Organisatorischem und mit der Bekanntgabe eines detaillierten Ablaufs über beide Lektionen und des Ziels: Die Textaufgaben sollen anhand der Lüspsak-Methode erarbeitet werden. Die Lehrperson bespricht noch einmal die Lüspsak-Methode im Einzelnen mit den Lernenden. Danach erarbeiten die Schülerinnen und Schüler in Partnerarbeit die Alters-Textaufgabe, gemäß Lüspsak bis zur Skizze, die sie dann im Zimmer aufhängen. Die aufgehängten Skizzen werden von jedem einzelnen Lernenden begutachtet und der besten ein Punkt gegeben. Darauf bespricht die Lehrperson die Punkteverteilung der Schülerinnen und Schülern in einem öffentlichen Unterrichtsgespräch und weist auf Fehler in den Skizzen hin. Die nächste Aufgabe ist eine Geometrie-Textaufgabe die nach kurzer Einleitung von den Lernenden wiederum in Partnerarbeit bis zur Skizze erarbeitet wird. Die Skizzen werden wieder zur Begutachtung und Punkteverteilung im Klassenzimmer aufgehängt. Danach bespricht die Lehrperson hauptsächlich im Lehrervortrag die Ergebnisse. Während dieser beiden Textaufgaben leistet die Lehrperson keinerlei Hilfestellung. (Projekt)    weniger

  • Textaufgaben (B12-T-2112-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Textaufgabenmodul

    Die zweite Lektion fängt auch wieder mit Organisatorischem an. Danach kehrt die Lehrperson wieder zur Alters-Textaufgabe zurück. Die Lehrperson gibt in einem Lehrervortrag noch einma...    mehr

    Die zweite Lektion fängt auch wieder mit Organisatorischem an. Danach kehrt die Lehrperson wieder zur Alters-Textaufgabe zurück. Die Lehrperson gibt in einem Lehrervortrag noch einmal eine längere Anleitung wie an diese Aufgabe herangegangen werden soll. Die Schülerinnen und Schüler erarbeiten nun in Partnerarbeit die vollständige Aufgabe. Die Lehrperson greift den Lernenden hilfreich unter die Arme. Auch diese Skizzen mit den vollständigen Lösungswegen werden im Klassenzimmer aufgehängt, begutachtet und bewertet. In einem Lehr-Lerngepsräch werden die Skizzen besprochen. Danach trägt die Lehrperson den Lösungsweg in einem Lehrervortrag am Hellraumprojektor vor. Im letzten Drittel der Lektion wird in einem fragend-entwickelndem Lehr-Lerngespräch die spezielle Aufgabe erarbeitet. (Projekt)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation