DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: SCHWEIZ (Filter: Ort der Aufzeichnung)
"SCHUELERARBEIT (PARTNERARBEIT)" (Filter: Sozialform)
HERLEITUNG (Filter: Schlagwörter)
BIOGRAFIE (Filter: Schlagwörter)

Anzahl der Treffer: 1
Filtern nach:
     1     
  • Satzgruppe des Pythagoras (B12-P-2112-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuc...    mehr

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuches und durch offene Fragen) bekannt. Danach zeigt die Lehrperson Bilder von Pythagoras am Hellraumprojektor und erzählt ausführlich von der Person des Pythagoras, von dessen Geschichte und Leistungen. Darauf schreibt die Lehrperson die Formel a2+b2=c2 an die Wandtafel mit dem Hinweis, dass die Schülerinnen und Schülern diese Formel so erforschen werden, damit sie sie dann einer anderen Person erklären können. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, gibt die Lehrperson den weiteren Ablauf der Stunde und das Ziel bekannt. Zur Erforschung des Satzes von Pythagoras arbeiten die Schülerinnen und Schüler zu zweit im Karusellprinzip an drei verschiedenen Aufträgen. Nach einigen Minuten wird die Partnerarbeit von der Lehrperson unterbrochen. Einzelne Schülerinnen und Schüler teilen der ganzen Klasse die bereits gemachten Gedanken und die ersten Erkenntnisse mit. Dies soll die anderen Schülerinnen und Schülern bei der Bearbeitung der noch nicht bearbeiteten Aufträge unterstützen. Nun wechseln die Lernenden ihre Plätze, um in Partnerarbeit einen neuen Auftrag zu bearbeiten und zu forschen. Nach etwa 10 Minuten neuerlicher Partnerarbeit bricht der Film ab. Auftrag 1: Bei der einen Aufgabenstellung handelt es sich um die grafische Darstellung des Ergänzungsbeweises. Die Fläche a2 und b2 und vier rechtwinklige Dreiecke (Quadrat) sind dabei gleich groß wie c2 und vier rechtwinklige Dreiecke (Quadrat). Dabei soll gezeigt werden, dass a2+b2=c2 (indem die vier gleich großen, rechtwinkligen Dreiecke von den Quadraten je abgezählt werden). Dabei handelt es sich um de Ergänzungsbeweis. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 2: Bei der zweiten Aufgabenstellung erhalten die Schülerinnen und Schüler mehrere Blätter. Die Grundlage der Aufgabenstellung bildet die Abbildung eines Parketts, das aus verschiedenen Rechtecken und drei verschieden großen Quadraten besteht. Nun sollen die Schülerinnen und Schüler das kleine Quadrat in zwei, das mittlere in drei Vielecke aufteilen und alle Vielecke sollen zu einem neuen Quadrat zusammengefügt werden, das auf das Parkettmuster passt. Bei dieser Aufgabenstellung handelt es sich um einen Zerlegungsbeweis des Satzes von Pythagoras. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 3: Bei der dritten Aufgabenstellung handelt es sich um das Nachvollziehen der Technik, anhand der die Ägypter rechte Winkel konstruierten. Rechte Winkel konstruierten die Ägypter mit Hilfe von zusammengeknoteten Seilstücken, die sie in zwölf gleich große Abschnitte einteilten. Dabei ist der Bezug zu den Seitenverhältnissen (3:4:5/ Zahlentripel) eines rechtwinkligen Dreiecks ausschlaggebend. Auch hier werden die Schülerinnen und Schüler aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag und der Vorgehensweise der Ägypter in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. (Projekt)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation