Logo Forschungsdaten Bildung
Suchen & Finden Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

Suche im Datenbestand  
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: "PROBLEMORIENTIERTER UNTERRICHT" (Filter: Schlagwörter)
Anzahl der Treffer: 44
  • Satzgruppe des Pythagoras (A01-P-1101-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Leh...    mehr

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Lehrperson einen Plan der Schwimmstrecke an die Wandtafel. In einer Meeresbucht muss vom Strand zu einer Boje, dann parallel zum Stand zu einer anderen Boje und wieder zurück zum Strand geschwommen werden. Ein Schüler zeichnet an der Wandtafel die zu schwimmen ideale Strecke ein. Da alle 1400 Schwimmer gleichzeitig starten, ist die Schwimmstrecke vom Strand zur ersten Boje für den zu äußerst startenden Schwimmer bedeutend weiter, als die ideale Strecke. Ein anderer Schüler zeichnet an der Wandtafel den Weg dieses Schwimmers ein. Dabei wird festgestellt, dass die erste, ideale Strecke rechtwinklig zum Strand steht. Nach einer ersten Schätzung fragt die Lehrperson die Schülerinnen und Schüler, ob sie einen Lösungsvorschlag hätten, die genaue Differenz der idealen und der äußersten Schwimmstrecke zu berechnen. Aus den Schüleraussagen kann sie dann entnehmen, dass irgendwo im Schulhaus der Satz des Pythagoras dargestellt wird, und dass die Schülerinnen und Schüler sich diese Darstellungen schon angesehen, wenn auch nicht vollständig verstanden haben. Die Lehrperson lässt die noch etwas unklaren Äusserungen der Schülerinnen und Schüler stehen und benennt zuerst mit Hilfe der Klasse Katheten und Hypotenuse im rechtwinkligen Dreieck an der Wandtafel. An Hand dieser Bezeichnungen und Beschriftung gelingt es nun einem Schüler für das Dreieck an der Wandtafel den Satz des Pythagoras richtig zu formulieren. Am Hellraumprojektor ist der Satz und eine ausgedeutschte Fassung davon zu sehen. Die Schülerinnen und Schüler lesen die beiden Varianten und erklären kurz in eigenen Worten, wie sie das verstehen. Auf die Frage, was der Satz denn nun bringt, fallen die Antworten „Hausbau“ und „Berechnung einer Entfernung“. Mündlich wird besprochen, wie bei einer solchen Berechnung vorgegangen werden müsste und wie die Umformungen des Satzes funktionieren. Während der Einkreisung des Satzes von Pythagoras, die Beschriftung und Bezeichnungen im rechtwinkligen Dreieck und schliesslich der Satz selber, wurden an der Wandtafel immer wieder Notizen zur Veranschaulichung des Gesagten gemacht. Diese Darstellungen übernehmen die Schülerinnen und Schüler nun in ihr Heft. Anschliessend berechnen die Schülerinnen und Schüler mit Hilfe der Lehrperson gemeinsam die Differenz zwischen der idealen und der äußersten Schwimmstrecke der Triathlonaufstellung und übernehmen dann Skizze und Berechnungen von der Wandtafel in ihr Heft. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A03-P-1104-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn der ersten Lektion der Pythagorasreihe klärt die Lehrperson organisatorische Belange bezüglich der Lektion. Darauf werden die Bezeichnungen des Dreiecks anhand eines fragen...    mehr

    Zu Beginn der ersten Lektion der Pythagorasreihe klärt die Lehrperson organisatorische Belange bezüglich der Lektion. Darauf werden die Bezeichnungen des Dreiecks anhand eines fragendentwickelnden Lehrgesprächs wiederholt. In einem darstellenden Lehrgespräch erläutert die Lehrperson nun die Bezeichnung Hypotenuse und Kathete. Danach zeichnen die Schülerinnen und Schüler ein rechtwinkliges Dreieck in ihr Heft und beschriften dieses gemäß dem eben Besprochenen, das auch an der Wandtafel steht. Nun erteilt die Lehrperson einen neuen Auftrag, bei dem die Lernenden ein Dreieck mit vorgegebenen Maßen konstruieren und beschriften (drei verschiedene Maße). Die Lehrperson zeigt die Konstruktion der Flächenquadrate über der Hypotenuse und den Katheten auf, worauf die Schülerinnen und Schüler diese in einer Stillarbeitsphase konstruieren. Diese quadratische Darstellung mit Quadratflächen über den Seiten gilt im Weiteren als Grundlage, um den Satz des Pythagoras problemorientiert zu entwickeln. In der nächsten Phase mit selbständiger Schülerarbeit berechnen die Schülerinnen und Schüler die Quadratflächen der Seiten ihrer Dreiecke und erhalten zusätzlich den Auftrag, diese zu vergleichen und zu schauen, ob ihnen etwas auffällt. Im folgenden gemeinsamen Lehr- und Lerngespräch wird der Satz des Pythagoras von einer Schülerin als Formel genannt und der Lehrer bestätigt diese mit der ausformulierten Version des Satzes von Pythagoras. Zum Schluss der Lektion beginnt die Lehrperson mit der Erarbeitung eines Ergänzungsbeweises. Dabei wird der Ergänzungsbeweis mit einem Lehr- und Lerngespräch auf geometrische und mathematische Weise erarbeitet. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue...    mehr

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue Quadrate (entsprechen a2, b2) und ein grünes (entspricht c2) Quadrat. Der Auftrag dazu lautet: Vergleiche die grünen und die zwei blauen Flächen (=Grundlage für Ergänzungsbeweis). Das wird zuerst gemeinsam in der Klasse besprochen. Dabei äußern die Schülerinnen und Schüler verschiedene Vermutungen, welche Figur größer ist. In der Folge leitet die Lehrperson die Schülerinnen und Schüler an, diese Vermutungen zu überprüfen und zu begründen oder zu beweisen. Daraufhin schieben die Schülerinnen und Schüler ihre Tische zu Gruppentischen zusammen (jeweils vier bis fünf Schülerinnen und Schüler). Danach verteilt die Lehrperson Arbeitsblätter, auf denen dieselben Quadrate abgebildet sind. Die Schülerinnen und Schüler arbeiten nun in ihren Gruppen selbständig entdeckend, wobei sie die Quadrate ausschneiden/ zerschneiden oder indem sie berechnen können. Die Lehrperson unterbricht diese Sequenz und nun sammelt die Klasse die Gruppenergebnisse. Diese werden jeweils von einer Gruppe vorgestellt und die Lehrperson schreibt die Ergebnisse an die Wandtafel. Die Klasse einigt sich mehr oder weniger darauf, dass die Flächen mit Einbezug von Messungenauigkeiten gleich groß sind. Danach stellt die Lehrperson den Beginn eines mathematischen Lösungsweges einer der fünf Gruppen vor. Dieser Lösungsweg entspricht dem Ergänzungsbeweis. Die Lehrperson leitet die Gruppen nun dazu an, die zwei Flächen c2+ vier Dreiecke und a2+ b2+ vier Dreiecke zu berechnen und zu vergleichen. In der Klasse wird aufgrund von Schwierigkeiten einzelner Schülerinnen und Schüler das Vorgehen schrittweise besprochen und von Schülerinnen und Schülern erklärt. Die Lösungen berechnen die Schülerinnen und Schüler in Vierer- oder Fünfergruppen. Die Gruppenarbeit wird durch eine Pause unterbrochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen ...    mehr

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen hat. Die Schülerinnen und Schüler arbeiten in Vierer- oder Fünfergruppen. Sie arbeiten selbständig explorierend. Gemeinsam in der Klasse wird anschließend die mathematische Herleitung des Ergänzungsbeweises nachvollzogen und zur Formel a2+ b2= c2 aufgelöst. (Berechnung der jeweiligen Flächen von a2, b2, vier kongruenten rechtwinkligen Dreiecken/ die Flächen von c2, vier kongruenten rechtwinkligen Dreiecken. Gleichsetzung der beiden grossen Quadrate und die Auflösung davon). Somit ist bewiesen, dass a2+ b2= c2 ist. Danach zeigt die Lehrperson auf dem Hellraumprojektor eine Darstellung und benennt diese als Darstellung des Satzes von Pythagoras. Ein Schüler nennt dazu die Formel a2+ b2= c2. Danach übernehmen die Schülerinnen und Schüler die grafische Darstellung, die Ausformulierung sowie Formel und Titel des Satzes von Pythagoras in ihr Theorieheft. Die Lehrperson bricht die Einzelarbeit am Ende der Stunde ab. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A05-P-1107-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identisch...    mehr

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identische Rechtecke mit den Seiten a und b zu einem Quadrat zusammengefügt wurden, so dass in der Mitte ein kleines Quadrat mit der Seitenlänge (a-b) entsteht. Als erstes schreiben die Schülerinnen und Schüler alle Teilseiten des großen Quadrates mit a und b an. Dann wird in der Klasse die Fläche des Quadrates durch a und b ausgedrückt und an der Wandtafel aufgeschrieben. Anschließend zeichnen die Schülerinnen und Schüler die Diagonalen der Rechtecke, die sie c nennen, ein, so dass diese ein neues Quadrat bilden. In der Klasse wir vor allem durch die Lehrperson gezeigt, dass es sich dabei auch tatsächlich um ein Quadrat handelt. Von dieser neuen Figur (ein Quadrat, bestehend aus vier rechtwinkligen Dreiecken und einem kleineren Quadrat) wird die gesamte Fläche durch die Teilflächen ausgedrückt und mit der ersten Gleichung gleichgesetzt. An der Wandtafel wird die Gleichung nun auf den Satz des Pythagoras vereinfacht. Die ganze Herleitung wird von den Schülerinnen und Schülern auf das Blatt abgeschrieben. Anschließend wendet sich die Klasse der Verwendung des Satzes von Pythagoras zu. Mit Hilfe der Lehrperson wird die Formel zur Berechnung der Quadratdiagonalen hergeleitet. Danach werden ganzzahlige pythagoräische Zahlentrippel gesucht und benannt. Die griechischen Bezeichnungen für die Seiten im rechtwinkligen Dreieck werden repetiert und auf die pythagoräischen Zahlentrippel angewendet. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A07-P-1110-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden zu versorgen. Danach findet der eigentliche Unterrichtseinsti...    mehr

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden zu versorgen. Danach findet der eigentliche Unterrichtseinstieg statt. Die Lehrperson hält eine zusammengeknotete Schnur in der Hand und sagt der Klasse, dass sie sich diese Stunde mit einer solchen Schnur beschäftigen werden. In einem fragend-entwickelnden Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler, wozu eine zusammengeknüpfte Schnur, überhaupt gebraucht werden kann. Darauf verteilt die Lehrperson je eine Schnur pro Gruppentisch. Währenddem erzählt sie, wozu die Ägypter die Seile verwendeten. Die Klasse benennt danach das Spezielle, das diesen zusammengeknüpften Schnüren gemeinsam ist. Als nächstes verteilt die Lehrperson ein Arbeitsblatt. Anhand von fünf Aufträgen werden die Schülerinnen und Schüler zur Beschäftigung mit den Schnurabschnitten angeleitet. Sie arbeiten selbständig explorativ in dreier oder vierer Gruppen an ihren Gruppentischen. Die Lernenden bilden dabei zuerst ein rechtwinkliges Dreieck. Danach bestimmen sie die einzelnen Seitenlängen des Schnurdreiecks und bestimmen, wo sich der rechte Winkel im Dreieck befindet. Dies versuchen sie in Worten schriftlich zu erklären. Zum Schluss schreiben sie sich Fragen auf, die sich stellten. Die Ergebnisse werden gemeinsam ausgewertet. Dabei schreibt die Lehrperson alle drei Seitenlängen der verschiedenen Gruppenseile an die Wandtafel. Nachdem die Lage des rechten Winkels besprochen wurde, wird in einem fragend-entwickelnden Lehrgespräch die Beschriftung des rechten Winkels und die Benennung der längsten und der beiden kürzeren Seiten im rechtwinkligen Dreieck (Hypotenuse, Katheten) geklärt. Danach leitet die Lehrperson die Lernenden an, die neu gelernten Bezeichnungen der Seiten in ihr Heft zum Dreieck, das sie zuvor in der Gruppenarbeit in ihr Heft gezeichnet hatten, zu notieren. Die Notizen werden darauf von den Schülerinnen und Schülern in Einzelarbeit in ihr Heft übernommen. Nach der Stillarbeit bestimmt die Klasse im öffentlichen Unterrichtsgespräch die Hypotenusen und Katheten der Schnurdreiecke anhand der Längenmaße an der Wandtafel. Die Lehrperson notiert dies an die Wandtafel. Zum Schluss der Stunde schreibt die Lehrperson Fragen, die sich bei der Gruppenarbeit gestellt haben, ebenso an die Wandtafel. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A07-P-1110-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    In der zweiten Stunde werden die Fragen der Gruppenarbeit der ersten Stunde zusammengetragen. Danach zeichnet die Lehrperson drei rechtwinklige Dreiecke an die Wandtafel. Das Ziel ...    mehr

    In der zweiten Stunde werden die Fragen der Gruppenarbeit der ersten Stunde zusammengetragen. Danach zeichnet die Lehrperson drei rechtwinklige Dreiecke an die Wandtafel. Das Ziel dabei ist, die Seitenbenennungen in rechtwinkligen Dreiecken zu trainieren. Als Training benennt die Klasse nun jeweils die Hypotenuse und die Katheten richtig. In der Folge erteilt die Lehrperson den Schülerinnen und Schülern den Auftrag, den Zusammenhang der Seiten beim rechtwinkligen Dreieck anhand eines Arbeitsblattes zu besprechen. Die Schülerinnen und Schüler arbeiten selbständig entdeckend in Gruppen an den Gruppentischen. Dabei geht es um die Entdeckung und das Verständnis verschiedener Zahlentripel und die Ausformulierung des Satzes von Pythagoras. Nach der Gruppenarbeit werden die Entdeckungen unter der Leitung der Lehrperson in der Klasse ausgetauscht. Dabei wird der Satz des Pythagoras ausformuliert und die Formel des Satzes wird im gemeinsamen Lehr- und Lerngespräch erarbeitet, genauso wie der Kehrsatz (Das Dreieck ist rechtwinklig, wenn ...). Zur Überprüfung des Kehrsatzes wird von einem Schüler an der Wandtafel eine Aufgabe gelöst. Nun bezeichnet die Lehrperson das, in dieser Lektion entwickelte, als den Satz des Pythagoras. Darauf schreiben die Schülerinnen und Schüler Titel, Formel und die Ausformulierung des Satzes von Pythagoras von der Wandtafel in ihr Heft ab. Zum Schluss der Lektion verteilt die Lehrperson die Hausaufgaben. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A08-P-1113-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die zweite Lektion beginnt mit organisatorischen Angaben, wobei die Lehrperson auch das Thema der Lektion bekannt gibt: der Satz des Pythagoras. Die Lehrperson lässt eine CD-Aufnahme...    mehr

    Die zweite Lektion beginnt mit organisatorischen Angaben, wobei die Lehrperson auch das Thema der Lektion bekannt gibt: der Satz des Pythagoras. Die Lehrperson lässt eine CD-Aufnahme laufen, auf der sich eine Stimme als Pythagoras von Samos vorstellt, den Satz des Pythagoras geometrisch und algebraisch erklärt und schließlich die Schülerinnen und Schüler zu einer Überprüfung des Satzes anleitet. Die Ergebnisse der Schülerinnen und Schüler werden im Plenum mit dem Satz des Pythagoras verglichen. Dabei erklärt die Lehrperson noch einmal genau, wie gerechnet werden muss. Danach greift die Lehrperson die Aussagen des „Pythagoras“ zur geometrischen Darstellung des Satzes auf, skizziert diese an der Wandtafel und verweist die Schülerinnen und Schüler auf das Blatt, das sie soeben bearbeitet haben und auf welchem der Satz des Pythagoras auch geometrisch dargestellt ist. Dann erzählt „Pythagoras“ aus der Geschichte des Satzes, der nach ihm benannt wurde. Die Schülerinnen und Schüler prüfen und formulieren den Satz an drei selbst gezeichneten Dreiecken, bei denen sie die rechten Winkel immer wieder anders benennen, und werden, nachdem diese Aufgabe kontrolliert wurde, von der Lehrperson noch einmal auf die Anwendung des Satzes hingewiesen. Nachdem der Satz noch einmal in Worten formuliert und ins Theorieheft geschrieben wurde, verweist die Lehrperson auf den Ablauf der nächsten Lektionen. Dann formulieren die Schülerinnen und Schüler im Plenum den Satz des Pythagoras für diverse rechtwinklige Dreiecke, deren Seiten andere Namen als a, b und c haben. Schließlich erhalten sie noch Hausaufgaben eben dieser Art, mit denen sie bis zum Ende der Lektion beginnen können. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A09-P-1114-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des...    mehr

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des Satzes von Pythagoras damit ein, dass sie den Schülerinnen und Schülern sagt, dass sie heute ein Phänomen kennenlernen, mit dem sich die Ägypter schon beschäftigt haben. Anhand eines Bildes von ägyptischen Pyramiden sollen die Schülerinnen und Schüler in der Klasse überlegen, wie im Wüstensand die Grundfläche der Pyramide wohl rechtwinklig abgesteckt werden könnte. Die Schülerinnen und Schüler äußern verschiedene, jedoch unbrauchbare Ideen zur Lösung dieses Problems. Schließlich teilt die Lehrperson vorbereitete Knotenschnüre an Schülergruppen aus. In diesen Gruppen sollen die Schülerinnen und Schüler nun selbständig herausfinden, wie mit Hilfe einer solchen Schnur ein rechter Winkel gelegt werden kann. Dank anregender Tipps der Lehrperson gelingt es schließlich allen Gruppen ein rechtwinkliges Dreieck mit den Seitenverhältnissen drei, vier, fünf zu legen. Anschließend wird die Lösung kurz an der Wandtafel dargestellt. Nachdem die Begriffe Kathete und Hypotenuse wieder ins Gedächtnis gerufen wurden, versucht die Klasse hinter den Zusammenhang der drei Zahlen drei, vier und fünf zu kommen. Im Plenum werden verschiedene Rechenoperationen getestet, auch das Quadrieren. Dabei wird die These aufgestellt, dass die Summe der Flächen der beiden Kathetenquadrate die Fläche des Hypotenusenquadrates ergibt. Zu dieser Annahme sollen die Schülerinnen und Schüler bis zur Pause selbständig weitere ganzzahlige Beispiele suchen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A09-P-1114-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung - Pythagoras: Pythagorasmodul

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der L...    mehr

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson den Satz des Pythagoras als Merksatz und schreiben in ihr Theorieheft. Ein Schüler übersetzt den Merksatz in die Formel a2+ b2= c2. Um zu überprüfen, ob die Formel denn nicht auch für andere Dreiecke gelten könnte, zeichnet jeder Schüler und jede Schülerin ein beliebiges Dreieck und probiert den Satz daran aus. Die Lehrperson stellt stellvertretend für die Schülerinnen und Schüler fest, dass der Satz also nur im rechtwinkligen Dreieck gültig ist. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson die Umkehrformeln zum Satz des Pythagoras, für die sie in zwei einschrittigen Anwendungsbeispielen Verwendung finden. Von zwei gegebenen rechtwinkligen Dreiecken ist je eine Seite gesucht. Bei beiden Aufgaben wird zuerst das Vorgehen in der Klasse besprochen, dann rechnen die Schülerinnen und Schüler selbständig die fehlende Seite aus und schließlich wird die Aufgabe und deren Lösungsweg in der Klasse verglichen. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation