DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: EINFUEHRUNG (Filter: Schlagwörter)
BIOGRAFIE (Filter: Schlagwörter)

Anzahl der Treffer: 4
Filtern nach:
     1     
  • Satzgruppe des Pythagoras (A06-P-1109-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der ersten Stunde der Pythagorasreihe gibt die Lehrperson das Thema bekannt. Danach liest ein Schüler von einer Folie des Hellraumprojektors Daten und weitere Ergänzungen z...    mehr

    Zu Beginn der ersten Stunde der Pythagorasreihe gibt die Lehrperson das Thema bekannt. Danach liest ein Schüler von einer Folie des Hellraumprojektors Daten und weitere Ergänzungen zum Leben des Pythagoras vor. Danach kommt die Klasse auf den Satz des Pythagoras zu sprechen. Die Schülerinnen und Schüler haben schon ein ziemlich fundiertes Wissen und tragen wichtige Punkte zum Satz des Pythagoras zusammen. Danach übertragen die Schülerinnen und Schüler die Formel und die Ausformulierung des Satzes von der Hellraumprojektor- Folie in ihr Formelheft. In der Folge wird besprochen wie der Kehrsatz des Satzes von Pythagoras heißt. Dieser wird an der Wandtafel notiert und die Lernenden übertragen den Kehrsatz direkt in ihr Formelheft. Darauf erzählt die Lehrperson, dass der Satz des Pythagoras schon im Altertum seine Anwendung fand und untermalt dies mit einer Folie einer ägyptischen Wandmalerei, welche die Schülerinnen und Schüler auch in ihrem Schulbuch haben. Darauf diskutiert die Klasse, wofür der Satz des Pythagoras damals wohl gebraucht wurde. Anschließend erzählt die Lehrperson vom Seiltrick und zeigt mit der Unterstützung zweier Schüler diesen mit einer Schnur vor. Damit veranschaulicht die Lehrperson die Konstruktion und Verwendung des rechten Winkels. Die Klasse zählt darauf die Einteilungen der Schnur, um die Seitenlängen zu bestimmen. Zur Veranschaulichung überträgt die Lehrperson das Dreieck auf die Wandtafel und die Klasse überprüft die Seileinteilung rechnerisch. Darauf schreibt die Lehrperson 3e+4e=5e an die Wandtafel und fordert die Lernenden auf, Angaben zu den drei Seiten eines Dreicks zu machen, wenn e als beliebige Zahl angenommen wird. Die Schülerinnen und Schüler nennen zwei Beispiele. Die Lehrperson konstruiert diese Dreiecke mit drei Baumetern und der Mithilfe eines Schülers. In der Folge verlangt die Lehrperson von Neuem die Nennung dreier Seiten eines rechtwinkligen Dreiecks, wobei das bekannte Zahlentrippel und dessen Verfielfältigung mit e diesmal nicht als Berechnungsgrundlage dienen soll. Die Schülerinnen und Schüler finden ein richtiges Beispiel. Die Lehrperson rundet die Sequenz ab, indem sie darauf verweist, dass diese Zahlen, die den Satz des Pythagoras erfüllen, pythagoräische Zahlentrippel genannt werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A13-P-1120-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vo...    mehr

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vorstellt und seine Erkenntnisse erklärt. Danach bittet die Lehrperson die Klasse, eine Skizze mit der Aussage des Pythagoras an die Wandtafel zu machen. Eine Schülerin skizziert darauf ein rechtwinkliges Dreieck an die Wandtafel, bezeichnet Katheten und Hypotenuse und ergänzt die Skizze des rechtwinkligen Dreiecks zur grafischen Darstellung des Satzes von Pythagoras, indem sie die Flächenquadrate über den Seiten zeichnet. Sie zeigt dabei, dass die kleinen Quadrate zusammen, das grosse Quadrat ergeben. Die Lehrperson beschriftet die Seiten des rechtwinkligen Dreiecks und die Seiten der Flächenquadrate mit a, b und c und die Flächenquadrate mit A1, A2 und A3. Darauf werden die Seiten des rechtwinkligen Dreiecks von einem Schüler mit Hypotenuse und Katheten angeschrieben. Die Lehrperson fordert darauf die Schülerinnen und Schüler auf, nun den Satz des Pythagoras mit den an die Wandtafel geschriebenen Bezeichnungen zu formulieren. Ein Schüler schreibt unter die grafische Darstellung A1+ A2= A3. Mit der Aufforderung der Lehrperson den Satz des Pythagoras mit den Bezeichnungen der Seiten anzuschreiben, notiert ein Schüler die nicht ganz korrekte Formel an die Wandtafel, die von der Klasse zu a2+ b2= c2 korrigiert wird. Danach erzählt die Lehrperson Geschichtliches zu Beweisführungen des Satzes und über die Wichtigkeit und Wirkung von Pythagoras bis hin zur Briefmarke und zur Werbung von Rittersport in unserer Zeit. Dazu befestigt die Lehrperson ein Plakat, auf dem der Satz des Pythagoras mit Rittersportschokolade dargestellt ist. In der Folge leitet die Lehrperson zum Zerlegungsbeweis über. Dazu leitet sie die Schülerinnen und Schüler an, aus zehn Figuren (Puzzleteile) und einem zusätzlichen rechtwinkligen Dreieck, die grafische Darstellung des Satzes von Pythagoras nachzubilden. Diese Arbeitsphase ist die Grundlage, für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler arbeiten dabei alleine. Der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Die Schülerarbeitsphase wird nach einer Weile von der Lehrperson unterbrochen und ein Schüler zeigt die Puzzlekombination am Helllramprojektor vor. An dieser Darstellung können sich die anderen Schülerinnen und Schüler orientieren. Ein zweiter Schüler zeichnet zur visuellen Unterstützung die Linien der Puzzleteile auf den Katheten- und dem Hypotenusenquadrat, einer vorgefertigten Skizze an der Wandtafel ein. Darauf werden die alten Puzzleteile eingesammelt und neue verteilt. Die Lehrperson erteilt einen neuen Auftrag an die Klasse. Dabei sollen die Schülerinnen und Schüler das Hypotenusen- und die Kathetenquadrate mit anderen Puzzleteilen zusammensetzten, um die grafische Darstellung des Satzes von Pythagoras zu bilden. Auch diese Arbeitsphase ist die Grundlage für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler bearbeiten den Auftrag alleine und der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Zur Kontrolle werden danach im öffentlichen Unterricht die Katheten- und Hypotenusenquadrate auf dem Hellraumprojektor (mit den Puzzleteilen) hingelegt. Dabei lösen sich verschiedene Schülerinnen und Schüler ab. Zum Schluss der Stunde überträgt ein Schüler zur visuellen Unterstützung die Linien der Puzzleteile auf eine zweite grafische Darstellung an der Wandtafel. (Projekt)     weniger

  • Satzgruppe des Pythagoras (B02-P-2102-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lehrperson eröffnet die Stunde, indem sie die Schülerinnen und Schüler auffordert, benötigtes Material zur Geometrie hervor zu holen. Danach gibt die Lehrperson das neue Thema ...    mehr

    Die Lehrperson eröffnet die Stunde, indem sie die Schülerinnen und Schüler auffordert, benötigtes Material zur Geometrie hervor zu holen. Danach gibt die Lehrperson das neue Thema „Der Satz des Pythagoras“ bekannt. Sie erzählt von Pythagoras, was er gemacht und herausgefunden hat. Nachdem die Lehrperson eine grafische Darstellung mit den Quadratflächen über den Seiten an der Wandtafel erstellt und die Formel a2+b2=c2 dazu geschrieben und erläutert hat, zeigt sie an der Wandtafel mit Hilfe von Papierquadraten und Dreiecken den Ergänzungsbeweis. Die Lehrperson erzählt noch die Geschichte von Pythagoras und seinen Errungenschaften fertig, bevor sie ein Theorieblatt mit dem Satz des Pythagoras als Formel und dessen Beweis den Lernenden verteilt. Anhand dieses Blattes erklärt die Lehrperson anschließend die Umformungen der pythagoräischen Formel. Danach erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schülern die Lösungsprozedur einer einschrittigen Aufgabe zur Seitenberechnung im rechtwinkligen Dreieck. Nachdem eine ähnliche weitere bearbeitet wurde, arbeiten die Schülerinnen und Schüler selbständig im Buch an ähnlichen einschrittigen Aufgaben weiter. Während der Schülerarbeitsphase unterbricht die Lehrperson kurz die Einzelarbeit, um zu erklären, dass der rechte Winkel bei Aufgabe zwei immer bei C ist. Zum Schluss gibt die Lehrperson die Hausaufgaben bekannt und gibt den Lernenden noch einen allgemeinen Hinweis über das Lernen, wie man an Aufgaben herangeht. Die Lernenden sollen, um Fehler zu vermeiden, die Instruktionen genau lesen und befolgen und nur berechnen, was gefragt ist. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B12-P-2112-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuc...    mehr

    Zu Beginn der ersten Lektion der Pythagorasreihe gibt die Lehrperson den Schülerinnen und Schhülern das Thema (Satz des Pythagoras) und die Erarbeitungsform (anhand des Lerntagebuches und durch offene Fragen) bekannt. Danach zeigt die Lehrperson Bilder von Pythagoras am Hellraumprojektor und erzählt ausführlich von der Person des Pythagoras, von dessen Geschichte und Leistungen. Darauf schreibt die Lehrperson die Formel a2+b2=c2 an die Wandtafel mit dem Hinweis, dass die Schülerinnen und Schülern diese Formel so erforschen werden, damit sie sie dann einer anderen Person erklären können. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, gibt die Lehrperson den weiteren Ablauf der Stunde und das Ziel bekannt. Zur Erforschung des Satzes von Pythagoras arbeiten die Schülerinnen und Schüler zu zweit im Karusellprinzip an drei verschiedenen Aufträgen. Nach einigen Minuten wird die Partnerarbeit von der Lehrperson unterbrochen. Einzelne Schülerinnen und Schüler teilen der ganzen Klasse die bereits gemachten Gedanken und die ersten Erkenntnisse mit. Dies soll die anderen Schülerinnen und Schülern bei der Bearbeitung der noch nicht bearbeiteten Aufträge unterstützen. Nun wechseln die Lernenden ihre Plätze, um in Partnerarbeit einen neuen Auftrag zu bearbeiten und zu forschen. Nach etwa 10 Minuten neuerlicher Partnerarbeit bricht der Film ab. Auftrag 1: Bei der einen Aufgabenstellung handelt es sich um die grafische Darstellung des Ergänzungsbeweises. Die Fläche a2 und b2 und vier rechtwinklige Dreiecke (Quadrat) sind dabei gleich groß wie c2 und vier rechtwinklige Dreiecke (Quadrat). Dabei soll gezeigt werden, dass a2+b2=c2 (indem die vier gleich großen, rechtwinkligen Dreiecke von den Quadraten je abgezählt werden). Dabei handelt es sich um de Ergänzungsbeweis. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 2: Bei der zweiten Aufgabenstellung erhalten die Schülerinnen und Schüler mehrere Blätter. Die Grundlage der Aufgabenstellung bildet die Abbildung eines Parketts, das aus verschiedenen Rechtecken und drei verschieden großen Quadraten besteht. Nun sollen die Schülerinnen und Schüler das kleine Quadrat in zwei, das mittlere in drei Vielecke aufteilen und alle Vielecke sollen zu einem neuen Quadrat zusammengefügt werden, das auf das Parkettmuster passt. Bei dieser Aufgabenstellung handelt es sich um einen Zerlegungsbeweis des Satzes von Pythagoras. Die Schülerinnen und Schüler werden aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. Auftrag 3: Bei der dritten Aufgabenstellung handelt es sich um das Nachvollziehen der Technik, anhand der die Ägypter rechte Winkel konstruierten. Rechte Winkel konstruierten die Ägypter mit Hilfe von zusammengeknoteten Seilstücken, die sie in zwölf gleich große Abschnitte einteilten. Dabei ist der Bezug zu den Seitenverhältnissen (3:4:5/ Zahlentripel) eines rechtwinkligen Dreiecks ausschlaggebend. Auch hier werden die Schülerinnen und Schüler aufgefordert, ihre Überlegungen und Gedanken zu diesem Auftrag und der Vorgehensweise der Ägypter in Stichworten zu notieren, um dann eine Formulierung auszuarbeiten. (Projekt)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation