DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: EINFUEHRUNG (Filter: Schlagwörter)
ERGEBNISSICHERUNG (Filter: Schlagwörter)

Anzahl der Treffer: 10
     1     
  • Satzgruppe des Pythagoras (A01-P-1101-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Leh...    mehr

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Lehrperson einen Plan der Schwimmstrecke an die Wandtafel. In einer Meeresbucht muss vom Strand zu einer Boje, dann parallel zum Stand zu einer anderen Boje und wieder zurück zum Strand geschwommen werden. Ein Schüler zeichnet an der Wandtafel die zu schwimmen ideale Strecke ein. Da alle 1400 Schwimmer gleichzeitig starten, ist die Schwimmstrecke vom Strand zur ersten Boje für den zu äußerst startenden Schwimmer bedeutend weiter, als die ideale Strecke. Ein anderer Schüler zeichnet an der Wandtafel den Weg dieses Schwimmers ein. Dabei wird festgestellt, dass die erste, ideale Strecke rechtwinklig zum Strand steht. Nach einer ersten Schätzung fragt die Lehrperson die Schülerinnen und Schüler, ob sie einen Lösungsvorschlag hätten, die genaue Differenz der idealen und der äußersten Schwimmstrecke zu berechnen. Aus den Schüleraussagen kann sie dann entnehmen, dass irgendwo im Schulhaus der Satz des Pythagoras dargestellt wird, und dass die Schülerinnen und Schüler sich diese Darstellungen schon angesehen, wenn auch nicht vollständig verstanden haben. Die Lehrperson lässt die noch etwas unklaren Äusserungen der Schülerinnen und Schüler stehen und benennt zuerst mit Hilfe der Klasse Katheten und Hypotenuse im rechtwinkligen Dreieck an der Wandtafel. An Hand dieser Bezeichnungen und Beschriftung gelingt es nun einem Schüler für das Dreieck an der Wandtafel den Satz des Pythagoras richtig zu formulieren. Am Hellraumprojektor ist der Satz und eine ausgedeutschte Fassung davon zu sehen. Die Schülerinnen und Schüler lesen die beiden Varianten und erklären kurz in eigenen Worten, wie sie das verstehen. Auf die Frage, was der Satz denn nun bringt, fallen die Antworten „Hausbau“ und „Berechnung einer Entfernung“. Mündlich wird besprochen, wie bei einer solchen Berechnung vorgegangen werden müsste und wie die Umformungen des Satzes funktionieren. Während der Einkreisung des Satzes von Pythagoras, die Beschriftung und Bezeichnungen im rechtwinkligen Dreieck und schliesslich der Satz selber, wurden an der Wandtafel immer wieder Notizen zur Veranschaulichung des Gesagten gemacht. Diese Darstellungen übernehmen die Schülerinnen und Schüler nun in ihr Heft. Anschliessend berechnen die Schülerinnen und Schüler mit Hilfe der Lehrperson gemeinsam die Differenz zwischen der idealen und der äußersten Schwimmstrecke der Triathlonaufstellung und übernehmen dann Skizze und Berechnungen von der Wandtafel in ihr Heft. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A02-P-1103-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben, dabei gibt die Lehrperson auch bekannt, dass in dieser und den folgenden Lektionen ein wichtiger Satz der Geometrie geler...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben, dabei gibt die Lehrperson auch bekannt, dass in dieser und den folgenden Lektionen ein wichtiger Satz der Geometrie gelernt werden soll. Dann repetiert die Klasse als erstes, wie ein - in diesem Fall rechtwinkliges - Dreieck beschriftet wird. Die entsprechenden Ausführungen hält die Lehrperson an der Wandtafel fest. An Hand dieses rechtwinkligen Dreiecks werden dann die Begriffe Kathete und Hypotenuse eingeführt. Danach lässt die Lehrperson zwei Schüler ein Werbeplakat aufhängen, auf dem über den Seiten eines rechtwinkligen Dreiecks mit den Seitenverhältnissen drei, vier und fünf Quadrate aus Rittersportschokolade geklebt wurden. Daran dass die Schülerinnen und Schüler sehen, dass neun plus sechzehn gleich fünfundzwanzig ist, stellt die Lehrperson die Behauptung auf, dass im rechtwinkligen Dreieck immer die Summe der Flächen der Kathetequadrate der Fläche des Hypotenusenquadrates entspricht. Dazu zeichnet die Lehrperson die Pythagorasfigur an die Wandtafel. Anschließend haben die Schülerinnen und Schüler Zeit, das rechtwinklige Dreieck mit den korrekten Beschriftungen, die Pythagorasfigur und den Satz des Pythagoras von der Wandtafel in ihr Theorieheft zu übernehmen. Als einige der Schülerinnen und Schüler mit dem Abschreiben fertig sind, fordert sie die Lehrperson auf, eine sprachliche Formulierung für den ins Heft geschriebenen Satz "a2+b2=c2" zu finden. Aus den Beiträgen der Schülerinnen und Schüler formuliert die Lehrperson einen vollständigen Merksatz und schreibt diesen an die Wandtafel. Die Schülerinnen und Schüler schreiben ihn ab. Abschliessend erklärt die Lehrperson, dass aber - in einer weiteren Stunde - noch bewiesen werden müsse, ob dieser Satz auch stimme. Nun lösen die Schülerinnen und Schüler einschrittige Hypotenusenberechnungen aus dem Buch und tragen die Resultate in eine vom Buch vorgegebene Tabelle ein: Die erste Aufgabe lösen sie in der Klasse mit der Lehrperson zusammen, drei weitere lösen sie selbständig, nachdem die Resultate der ersten Aufgabe verglichen wurden. Bevor die Lektion zu Ende ist werden die drei weiteren Aufgaben noch kurz im Klassenverband besprochen und die Resultate verglichen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A06-P-1109-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der ersten Stunde der Pythagorasreihe gibt die Lehrperson das Thema bekannt. Danach liest ein Schüler von einer Folie des Hellraumprojektors Daten und weitere Ergänzungen z...    mehr

    Zu Beginn der ersten Stunde der Pythagorasreihe gibt die Lehrperson das Thema bekannt. Danach liest ein Schüler von einer Folie des Hellraumprojektors Daten und weitere Ergänzungen zum Leben des Pythagoras vor. Danach kommt die Klasse auf den Satz des Pythagoras zu sprechen. Die Schülerinnen und Schüler haben schon ein ziemlich fundiertes Wissen und tragen wichtige Punkte zum Satz des Pythagoras zusammen. Danach übertragen die Schülerinnen und Schüler die Formel und die Ausformulierung des Satzes von der Hellraumprojektor- Folie in ihr Formelheft. In der Folge wird besprochen wie der Kehrsatz des Satzes von Pythagoras heißt. Dieser wird an der Wandtafel notiert und die Lernenden übertragen den Kehrsatz direkt in ihr Formelheft. Darauf erzählt die Lehrperson, dass der Satz des Pythagoras schon im Altertum seine Anwendung fand und untermalt dies mit einer Folie einer ägyptischen Wandmalerei, welche die Schülerinnen und Schüler auch in ihrem Schulbuch haben. Darauf diskutiert die Klasse, wofür der Satz des Pythagoras damals wohl gebraucht wurde. Anschließend erzählt die Lehrperson vom Seiltrick und zeigt mit der Unterstützung zweier Schüler diesen mit einer Schnur vor. Damit veranschaulicht die Lehrperson die Konstruktion und Verwendung des rechten Winkels. Die Klasse zählt darauf die Einteilungen der Schnur, um die Seitenlängen zu bestimmen. Zur Veranschaulichung überträgt die Lehrperson das Dreieck auf die Wandtafel und die Klasse überprüft die Seileinteilung rechnerisch. Darauf schreibt die Lehrperson 3e+4e=5e an die Wandtafel und fordert die Lernenden auf, Angaben zu den drei Seiten eines Dreicks zu machen, wenn e als beliebige Zahl angenommen wird. Die Schülerinnen und Schüler nennen zwei Beispiele. Die Lehrperson konstruiert diese Dreiecke mit drei Baumetern und der Mithilfe eines Schülers. In der Folge verlangt die Lehrperson von Neuem die Nennung dreier Seiten eines rechtwinkligen Dreiecks, wobei das bekannte Zahlentrippel und dessen Verfielfältigung mit e diesmal nicht als Berechnungsgrundlage dienen soll. Die Schülerinnen und Schüler finden ein richtiges Beispiel. Die Lehrperson rundet die Sequenz ab, indem sie darauf verweist, dass diese Zahlen, die den Satz des Pythagoras erfüllen, pythagoräische Zahlentrippel genannt werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A14-P-1126-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der Doppellektion gibt die Lehrperson bekannt, dass sie mit dem Thema „Geometrische Sätze“ weiterfahren möchte. Im Anschluss an die Bekanntgabe des Themas hängt sie ein Plaka...    mehr

    Zu Beginn der Doppellektion gibt die Lehrperson bekannt, dass sie mit dem Thema „Geometrische Sätze“ weiterfahren möchte. Im Anschluss an die Bekanntgabe des Themas hängt sie ein Plakat an die Wandtafel mit der Darstellung eines rechtwinkligen Dreiecks und den Quadraten über den Dreiecksseiten. Die Quadratflächen sind mit lauter gleich großen und quadratischen Schokoladenstückchen beklebt. Die Lehrperson fordert die Schülerinnen und Schüler auf, anhand der Darstellung zu entdecken, was der Satz von Pythagoras wohl aussagt. Gemeinsam finden sie heraus, dass die Quadrate über den Katheten zusammen gleich groß sein müssen wie das Quadrat über der Hypotenuse und dass der Satz nur in rechtwinkligen Dreiecken Gültigkeit hat. Nachdem eine Schülerin den Satz nochmals allgemein formuliert hat, gibt die Lehrperson folgenden Auftrag: Die Schülerinnen und Schüler sollen selbständig den Satz für sich formulieren und aufschreiben und mit einer entsprechenden Skizze ergänzen. Danach fordert die Lehrperson einige der Lernenden auf, ihre Formulierungen laut vorzutragen. Eine richtige Formulierung des Satzes schreibt die Lehrperson an die Wandtafel. Dann beschriften sie noch die Flächen der Skizze und schreiben den Satz von Pythagoras in Kurzform dazu. Anhand der Darstellung auf dem Plakat an der Wandtafel, erarbeiten sie gemeinsam eine erste Aufgabe, indem sie die entsprechenden Zahlen (Schokoladenquadrate) in die Kurzform einsetzen. Danach lösen sie ebenfalls im Klassenverband eine Aufgabe zur Berechnung der Hypotenuse, gegeben sind die beiden Katheten. Eine weitere ähnliche Aufgabe wird gelöst, diesmal soll mit Hilfe der Formel eine der Katheten berechnet werden. Anschließend lösen sie im Buch zwei Aufgaben zum Erkennen von rechtwinkligen Dreiecken. Die Schülerinnen und Schüler formulieren für alle gut hörbar die Zusammenhänge zwischen den Seitenlängen. Im Anschluss daran, erarbeitet die Lehrperson zusammen mit den Lernenden eine neue Aufgabe. Die Aufgabe besteht aus sechs ähnlichen unabhängigen Berechnungsaufgaben. Es handelt sich um rechtwinklige Dreiecke, in denen jeweils zwei Dreiecksseiten und der Ort des rechten Winkels gegeben sind. Zusammen erstellen sie die Skizze zur ersten Teilaufgabe. Die Schülerinnen und Schüler sollen mit den erarbeiteten Angaben selber die fehlende Seite berechnen. Danach kontrollieren sie gemeinsam das Ergebnis, indem sie den Lösungsweg an die Wandtafel schreiben. Im Anschluss daran sollen die Schülerinnen und Schüler selbständig drei weitere Teilaufgaben in ihr Heft lösen. Während der Einzelarbeit gibt die Lehrperson für diejenigen, welche bereits fertig sind, die beiden letzten Teilaufgaben zum Lösen. Bevor sie Pause machen, kontrollieren sie noch die ersten drei Ergebnisse, indem sie die Hypotenuse und das Resultat nennen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A17-P-1218-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck die üblichen griechischen Bezeichnungen festgelegt und von den Schülerinnen und Schülern in ihr Theorieheft übernommen. Anschließend zeigt die Lehrperson die drei Dreiecke, die entstehen, wenn ein großes rechtwinkliges Dreieck durch die Höhe über der Hypotenuse in zwei kleine Dreiecke unterteilt wird, nebeneinander und behauptet, dass diese ähnlich sind. Auf Grund dieser Aussage nennen die Schülerinnen und Schüler den Ähnlichkeitssatz, der auf diese Behauptung zutrifft und bestätigen so die Aussage der Lehrperson. Auch diese Dreiecke werden von den Schülerinnen und Schülern in ihr Theorieheft übernommen, der Ähnlichkeitssatz dazugeschrieben. Nun stellt die Klasse verschiedene, ausgewählte Verhältnisse zwischen den Seiten der drei Dreiecke auf. Aus diesen Verhältnisgleichungen wird an der Wandtafel der Kathetensatz errechnet und anschließend von der Lehrperson, Schülerinnen und Schülern in Worte gefasst. Alles was neu an der Wandtafel erarbeitet wurde, schreiben und zeichnen die Schülerinnen und Schüler ab. Anschließend nennen die Schülerinnen und Schüler den Kathetensatz für verschiedene vorgegebene rechtwinklige Dreiecke mit unterschiedlichen Seitenbezeichnungen. Schließlich besprechen sie im Plenum, was von einem rechtwinkligen Dreieck ausgerechnet werden kann, wenn die Hypotenuse und ein Hypotenusenabschnitt gegeben ist. In Stillarbeit berechnen die Schülerinnen und Schüler zwei solche Aufgaben, welche vor dem Ende der Lektion in der Klasse besprochen werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A19-P-1223-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dies...    mehr

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dieser Darstellung teilt sie auch an die Schülerinnen und Schüler aus. Ihre Aufgabe ist es, zu zweit den Lösungsweg zur Berechnung der Länge der für die Herstellung eines solchen Daches benötigten Dachsparren zu finden, wenn das Dreieck, das die beiden Dachschrägen und die Parallele zum Boden bilden, im Giebel rechtwinklig ist. Auch die Länge eines solchen Teildaches und der Punkt, wo dieses von der Höhe durch den Giebel geteilt wird, sind den Schülerinnen und Schülern bekannt. Nach etwa zehn Minuten wird im Plenum besprochen, auf was für Lösungsansätze die Schülerinnen und Schüler gekommen sind. Eine Schülerin schlägt vor, das Dreieck zu konstruieren und die Länge der Dachsparren durch Messen zu bestimmen. Auch fällt das Stichwort "Strahlensätze", woran die Lehrperson das weiterführende Lehr-Lerngespräch anknüpft. An der Wandtafel hängt die Lehrperson ein rechtwinkliges Dreieck aus braunem Papier auf und lässt einen Schüler die zwei Teildreiecke aus blauem Papier, die durch das Einzeichnen der Höhe entstünden, exakt darüber hängen. Dieser Schüler ist es auch, der behauptet, alle diese Papierdreiecke seien zueinander ähnlich. Dies wird durch die Lehrperson bestätigt und für die anderen Schülerinnen und Schüler durchsichtig gemacht. Nun hängt die Lehrperson ein weiteres zum braunen Dreieck identisches Papierdreieck an die Wandtafel. Ein Schüler hängt eines der blauen Dreiecke so auf das zweite braune, dass die Klasse sieht, wie der zweite Strahlensatz auf diese beiden Dreiecke angewendet werden kann. Die Lehrperson schreibt alle bekannten Grössen aus der Dachsparrenaufgabe in Zahlen, die unbekannten in Buchstaben auf die beiden Dreiecke. Mit diesen Angaben stellt die Klasse die Verhältnisgleichung auf und rechnet so die eine Kathete des braunen Dreiecks aus. Anschließend schreiben, zeichnen und kleben die Schülerinnen und Schüler den ganzen Lösungsweg von der Wandtafel ab. Dabei überlegen sie sich bereits den Lösungsweg zur Berechnung des anderen Dachsparrens. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B06-P-2106-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreibe...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreiben und die aufgeschriebenen Aufträge dann auch ausführen: Sie sollen sechs Quadrate, die die Seitenlängen von zwei pythagoräischen Zahlentripeln aufweisen, ausschneiden, die zusammengehörenden zu Pythagorasfiguren zusammenlegen und ihre Beobachtungen dazu schriftlich festhalten. Während die Schülerinnen und Schüler die Aufträge zur Exploration des Satzes von Pythagoras der Reihe nach ausführen, erklärt die Lehrperson, was mit „zu einem Dreieck zusammenlegen“ gemeint ist, eben die Pythagorasfigur legen. Schließlich geht die Lehrperson den Aufgabenkatalog Punkt für Punkt durch, die Schüler geben ihre Beobachtungen an die Klasse weiter. Da der Satz des Pythagoras bei einigen Schülern schon bekannt ist, kommt dieser als Beobachtung bald zur Sprache. An dieser Stelle erklärt die Lehrperson, was der Satz des Pythagoras ist. Danach wird ein weiterer Punkt aus dem Katalog besprochen, was die Lehrperson dazu verleitet, der Klasse etwas über den Mathematiker und Philosophen Pythagoras aus dem Lexikon vorzulesen. Schließlich wird der letzte Punkt besprochen: Weitere Dreiecke suchen, von denen die Summe zweier Seitenquadrate das Quadrat der dritten ergibt. Danach sollen die Schüler selbständig einen Eintrag in ihr Theorieheft machen. Bevor der Film zu Ende ist, beginnt die Lehrperson den Beweis an Hand des Kathetensatzes vorzuzeigen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B10-P-2110-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand einer Zahlentripelaufgabe den Satz des Pythagoras. Die Schüler(innen) versuchen in Partnerarbeit mit drei Schnüren mit vorgegebener Länge ein rechtwinkliges Dreieck auszulegen und tragen ihre Ergebnisse an der Wandtafel ein. Angeleitete Stillarbeitsphasen und öffentliche Kontrollphasen bez. Erarbeitungsphasen wechseln sich ab. Anschließend erarbeitet die Lehrperson gemeinsam mit den Schüler(innen) an der Wandtafel einen Hefteintrag, in welchem der Satz grafisch dargestellt wir. Die Schüler(innen) übernehmen die Wandtafelanschrift in ihr Heft. Danach erfolgt eine kurze Repetition der Seitenbezeichnungen im rechtwinkligen Dreieck. Darauf hält die Lehrperson die erarbeitete Formel an der Wandtafel fest und formuliert den Merksatz in Worten aus, die Schüler(innen) schreiben mit. Bevor die Lehrperson die Schüler(innen) in die Pause entlässt, gibt sie einen Ausblick darauf, was sie nach der kurzen Pause im zweiten Teil der Doppelstunde machen werden. Die Lektion endet mit organisatorischen Hinweisen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B11-P-2111-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papie...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papier. In der Klasse werden - ohne diese schriftlich fest zu halten - kurz die Bezeichnungen im rechtwinkligen Dreieck angesprochen. Danach versuchen die Schülerinnen und Schüler in Gruppen an Hand der vorliegenden Dreiecke Verhältnisregeln, die im rechtwinkligen Dreieck gelten sollen, herauszufinden. Da der Satz des Pythagoras bei einigen Schülerinnen und Schüler bereits bekannt ist, bringen zwei der drei Schülergruppen in einer Sammlungsphase dann auch zur Sprache, dass die Summe der Flächen der Kathetenquadrate der Fläche des Hypotenusenquadrats entspricht. Auf Grund dieser Annahme füllen die Schülerinnen und Schüler eine Tabelle an der Wandtafel mit den Maßen ihrer Dreiecke aus. Mit diesen Berechnungen wird überprüft, dass die Summe der Kathetequadrate der vermessenen Dreiecke ziemlich genau ihren Hypotenusenquadraten entspechen. Anschließend stellt die Lehrperson diese Aussage mit der Pythagorasfigur an der Wandtafel bildlich dar und zeigt dann ein Computerprogramm, das beim Verschieben des rechten Winkels eines rechtwinkligen Dreiecks auf dem Thaleskreis sofort alle Seitenquadrate berechnet. Den mathematischen Beweis des Satzes kündigt die Lehrperson für die nächste Lektion an. Dann legt sie eine Folie auf den Hellraumprojektor, auf der alle wichtigen Aussagen dieses Theorieteils festgehalten sind. Die Schülerinnen und Schüler übernehmen das auf der Folie Beschriebene in ihr Theorieheft. Diejenigen Schülerinnen und Schüler, die mit Abschreiben fertig sind, beginnen selbständig mit einschrittigen Berechnugen von Seiten eines gegebenen rechtwinkligen Dreiecks. Vor dem Ende der Lektion werden die Hausaufgaben - diese ersten vier Dreiecksseiten zu berechnen und eine Vorbereitungsaufgabe für den Beweis der nächsten Lektion - erteilt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B19-P-2204-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran...    mehr

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran: Wie hoch und/ oder breit darf ein am Boden zusammengebauter IKEA-Schrank sein, damit er in einem 223 cm hohen Zimmer aufgestellt werden kann. In Zweiergruppen überlegen sich die Schülerinnen und Schüler mit welchen der vorgegebenen Schränke das möglich ist. Nach einigen Minuten sammelt die Lehrperson die Meinungen der Schülerinnen und Schüler und hält sie auf einer Planskizze fest. Die Meinungen gehen weit auseinander. Nun haben die Schülerinnen und Schüler zwei Möglichkeiten wie sie weiterarbeiten wollen: Die einen schneiden die Planteile der Schränke aus, die andern suchen nach einer allgemeingültigen Formel und versuchen so explorativ herauszufinden, welcher der verschiedenen Schränke denn nun aufgestellt werden kann und welcher nicht und woran es liegen könnte, dass ein Schrank aufgestellt werden kann oder nicht. Im Plenum äußern sich die Schüler über ihre Erkenntnisse: Entscheidend ist die Diagonale. Die Lehrperson abstrahiert das Problem auf ein rechtwinkliges Dreieck, von dem man die Hypotenuse nicht kennt. Ein Schüler kennt den Satz des Pythagoras und nennt ihn als Lösungsvorschlag. Die Lehrperson stellt den Satz an der Wandtafel geometrisch dar und der Schüler rechnet vor, wie die Diagonale eines Schrankes mit dem Satz zu bestimmen ist. Danach fordert die Lehrperson die Schülerinnen und Schüler auf, die Diagonalen der anderen Schränke zu berechnen und so endlich zu bestimmen, welcher nun aufgestellt werden könne. Da sich nun alle einig sind, welcher Schrank in das Zimmer passt, übernehmen die Schülerinnen und Schüler die geometrischen Ausführungen in ihr Theorieheft. Dazu soll jeder für sich den Satz des Pythagoras in eigenen Worten formulieren. (Projekt)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation