DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: EINFUEHRUNG (Filter: Schlagwörter)
LOESUNGSSTRATEGIE (Filter: Schlagwörter)

Anzahl der Treffer: 13
  • Satzgruppe des Pythagoras (A04-P-1106-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue...    mehr

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue Quadrate (entsprechen a2, b2) und ein grünes (entspricht c2) Quadrat. Der Auftrag dazu lautet: Vergleiche die grünen und die zwei blauen Flächen (=Grundlage für Ergänzungsbeweis). Das wird zuerst gemeinsam in der Klasse besprochen. Dabei äußern die Schülerinnen und Schüler verschiedene Vermutungen, welche Figur größer ist. In der Folge leitet die Lehrperson die Schülerinnen und Schüler an, diese Vermutungen zu überprüfen und zu begründen oder zu beweisen. Daraufhin schieben die Schülerinnen und Schüler ihre Tische zu Gruppentischen zusammen (jeweils vier bis fünf Schülerinnen und Schüler). Danach verteilt die Lehrperson Arbeitsblätter, auf denen dieselben Quadrate abgebildet sind. Die Schülerinnen und Schüler arbeiten nun in ihren Gruppen selbständig entdeckend, wobei sie die Quadrate ausschneiden/ zerschneiden oder indem sie berechnen können. Die Lehrperson unterbricht diese Sequenz und nun sammelt die Klasse die Gruppenergebnisse. Diese werden jeweils von einer Gruppe vorgestellt und die Lehrperson schreibt die Ergebnisse an die Wandtafel. Die Klasse einigt sich mehr oder weniger darauf, dass die Flächen mit Einbezug von Messungenauigkeiten gleich groß sind. Danach stellt die Lehrperson den Beginn eines mathematischen Lösungsweges einer der fünf Gruppen vor. Dieser Lösungsweg entspricht dem Ergänzungsbeweis. Die Lehrperson leitet die Gruppen nun dazu an, die zwei Flächen c2+ vier Dreiecke und a2+ b2+ vier Dreiecke zu berechnen und zu vergleichen. In der Klasse wird aufgrund von Schwierigkeiten einzelner Schülerinnen und Schüler das Vorgehen schrittweise besprochen und von Schülerinnen und Schülern erklärt. Die Lösungen berechnen die Schülerinnen und Schüler in Vierer- oder Fünfergruppen. Die Gruppenarbeit wird durch eine Pause unterbrochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A05-P-1107-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identisch...    mehr

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identische Rechtecke mit den Seiten a und b zu einem Quadrat zusammengefügt wurden, so dass in der Mitte ein kleines Quadrat mit der Seitenlänge (a-b) entsteht. Als erstes schreiben die Schülerinnen und Schüler alle Teilseiten des großen Quadrates mit a und b an. Dann wird in der Klasse die Fläche des Quadrates durch a und b ausgedrückt und an der Wandtafel aufgeschrieben. Anschließend zeichnen die Schülerinnen und Schüler die Diagonalen der Rechtecke, die sie c nennen, ein, so dass diese ein neues Quadrat bilden. In der Klasse wir vor allem durch die Lehrperson gezeigt, dass es sich dabei auch tatsächlich um ein Quadrat handelt. Von dieser neuen Figur (ein Quadrat, bestehend aus vier rechtwinkligen Dreiecken und einem kleineren Quadrat) wird die gesamte Fläche durch die Teilflächen ausgedrückt und mit der ersten Gleichung gleichgesetzt. An der Wandtafel wird die Gleichung nun auf den Satz des Pythagoras vereinfacht. Die ganze Herleitung wird von den Schülerinnen und Schülern auf das Blatt abgeschrieben. Anschließend wendet sich die Klasse der Verwendung des Satzes von Pythagoras zu. Mit Hilfe der Lehrperson wird die Formel zur Berechnung der Quadratdiagonalen hergeleitet. Danach werden ganzzahlige pythagoräische Zahlentrippel gesucht und benannt. Die griechischen Bezeichnungen für die Seiten im rechtwinkligen Dreieck werden repetiert und auf die pythagoräischen Zahlentrippel angewendet. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A11-P-1118-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Geme...    mehr

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Gemeinde bittet Bauer Piepenbrink deshalb, seine zwei quadratischen Felder gegen ein drittes größeres, quadratisches Feld einzutauschen. Sein Sohn, der ebenso wie die Schüler in die neunte Klasse geht, empfiehlt seinem Vater den Tausch. Am Stammtisch unterhält er sich mit zwei anderen Landwirten, Plattfuß und Grossmaul. Die Tochter des Bauern Plattfuß geht auch in die neunte Klasse und empfiehlt auch ihrem Vater seine zwei quadratischen Felder gegen ein grösseres quadratisches Feld einzutauschen. Ebenso will es der Bauer Großmaul machen. An der Wandtafel wird die jeweilige Planskizze der drei Felder aufgehängt. Die Lehrperson hat auf aufwendige Art die Gruppeneinteilung vorbereitet. Nun versuchen die Schülerinnen und Schüler in 6 Gruppen (à 3 bis 4 Lernende) selbständig herauszufinden, ob sich der Feldertausch für den ihnen zugeteilten Bauern wirklich lohnt und weshalb. Dabei arbeiten die Lernenden mit der ihnen bekannten Maßstabsvergrösserung und der Flächenberechnung von Quadraten. In der nächsten Arbeitsphase tauschen sich jeweils zwei Gruppen aus, die den Feldertausch desselben Bauern bearbeitet haben. Anschließend stellen je zwei Schülerinnen und Schüler der Expertengruppen an der Wandtafel vor, wie sie das Problem gelöst haben. Die Lehrperson leitet mit der Frage, warum nun der eine Landwirt ein kleineres, gleichgroßes oder größeres Feld erhält, (obwohl alle kleineren Felder der Bauern gleich gross sind), zur Erarbeitung des Satzes von Pythagoras über. So kommen die Schülerinnen und Schüler im folgenden entwickelnden Lehr- und Lerngespräch einerseits auf die Dreiecke und deren Winkel zu sprechen, die von den Feldern von Großmaul (spitzwinklig), Piepenbrink (rechtwinklig) und Plattfuß (stumpfwinklig) umgeben sind. Andererseits fordert die Lehrperson die Schülerinnen und Schüler auf, eine Regel für das rechtwinklige Dreieck zu finden. Die Lernenden tragen wichtige Details zusammen und vor der Pause formuliert die Lehrperson den Satz des Pythagoras in Worten und hält ihn an der Wandtafel fest. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A12-P-1119-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die ...    mehr

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die Klasse die Seiten des Rechtecks und dessen Fläche sowie die Fläche der zwei Dreiecke. Nun leitet die Lehrperson die Schülerinnen und Schüler an, beim nächsten Auftrag genau so vorzugehen. Einmal sollen die Schülerinnen und Schüler von der Gesamtfläche der Figur und einmal von den Teilflächen der Figur ausgehen, um den Flächeninhalt eines Quadrates zu berechnen. Das Quadrat soll von vier kongruenten Dreiecken gebildet werden, wobei das Quadrat nicht notwendig vollständig ausgefüllt sein muss. Nach der zweifachen Berechnung des Flächeninhaltes, sollen die Schülerinnen und Schüler ihre Beobachtungen notieren. In er darauf folgenden Schülerarbeitsphase arbeiten die Schülerinnen und Schüler selbständig entdeckend. Danach werden in der Klasse die Resultate besprochen. Zuerst stellt eine Schülergruppe ihren Lösungsweg am Hellraumprojektor und an der Wandtafel vor, die Klasse und die Lehrperson ergänzen ihren Lösungsweg. Ein zweiter Lösungsweg wird von einer Schülerin am Hellraumprojektor mit Figuren gelegt. Den Lösungsweg schreibt sie an die Wandtafel. Der Lösungsweg wird durch Mitschülerinnen und Mitschüler unter Führung der Lehrperson ergänzt. Auch diese Gleichung wird aufgelöst. Bei beiden Flächengleichsetzungen ergibt sich die Lösung a2 + b2 = c2 . Nun stellt die Lehrperson die Frage, ob diese Formel für alle Dreiecke gelte. Die Lehrperson zeigt nun der Klasse mehrmals die Umwandlung der grafischen Darstellung des algebraischen Beweises zur Darstellung des Satzes von Pythagoras. Dadurch will die Lehrperson den Schülerinnen und Schülern zeigen, dass der Satz nur in rechtwinkligen Dreiecken gilt. Dies formulieren die Schülerinnen und Schüler auch gegen Ende dieser Phase. Darauf zeigt die Lehrperson an der Wandtafel, mit Unterstützung der Klasse, wie man ein rechtwinkliges Dreieck konstruiert. Zum Schluss der Stunde instruiert die Lehrperson die Klasse, wie die Seiten beschriftet werden, und dass die zwei kürzeren Seiten eines rechtwinkligen Dreiecks Katheten und die längere Seite Hypotenuse genannt wird. Danach ist Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A13-P-1120-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vo...    mehr

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vorstellt und seine Erkenntnisse erklärt. Danach bittet die Lehrperson die Klasse, eine Skizze mit der Aussage des Pythagoras an die Wandtafel zu machen. Eine Schülerin skizziert darauf ein rechtwinkliges Dreieck an die Wandtafel, bezeichnet Katheten und Hypotenuse und ergänzt die Skizze des rechtwinkligen Dreiecks zur grafischen Darstellung des Satzes von Pythagoras, indem sie die Flächenquadrate über den Seiten zeichnet. Sie zeigt dabei, dass die kleinen Quadrate zusammen, das grosse Quadrat ergeben. Die Lehrperson beschriftet die Seiten des rechtwinkligen Dreiecks und die Seiten der Flächenquadrate mit a, b und c und die Flächenquadrate mit A1, A2 und A3. Darauf werden die Seiten des rechtwinkligen Dreiecks von einem Schüler mit Hypotenuse und Katheten angeschrieben. Die Lehrperson fordert darauf die Schülerinnen und Schüler auf, nun den Satz des Pythagoras mit den an die Wandtafel geschriebenen Bezeichnungen zu formulieren. Ein Schüler schreibt unter die grafische Darstellung A1+ A2= A3. Mit der Aufforderung der Lehrperson den Satz des Pythagoras mit den Bezeichnungen der Seiten anzuschreiben, notiert ein Schüler die nicht ganz korrekte Formel an die Wandtafel, die von der Klasse zu a2+ b2= c2 korrigiert wird. Danach erzählt die Lehrperson Geschichtliches zu Beweisführungen des Satzes und über die Wichtigkeit und Wirkung von Pythagoras bis hin zur Briefmarke und zur Werbung von Rittersport in unserer Zeit. Dazu befestigt die Lehrperson ein Plakat, auf dem der Satz des Pythagoras mit Rittersportschokolade dargestellt ist. In der Folge leitet die Lehrperson zum Zerlegungsbeweis über. Dazu leitet sie die Schülerinnen und Schüler an, aus zehn Figuren (Puzzleteile) und einem zusätzlichen rechtwinkligen Dreieck, die grafische Darstellung des Satzes von Pythagoras nachzubilden. Diese Arbeitsphase ist die Grundlage, für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler arbeiten dabei alleine. Der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Die Schülerarbeitsphase wird nach einer Weile von der Lehrperson unterbrochen und ein Schüler zeigt die Puzzlekombination am Helllramprojektor vor. An dieser Darstellung können sich die anderen Schülerinnen und Schüler orientieren. Ein zweiter Schüler zeichnet zur visuellen Unterstützung die Linien der Puzzleteile auf den Katheten- und dem Hypotenusenquadrat, einer vorgefertigten Skizze an der Wandtafel ein. Darauf werden die alten Puzzleteile eingesammelt und neue verteilt. Die Lehrperson erteilt einen neuen Auftrag an die Klasse. Dabei sollen die Schülerinnen und Schüler das Hypotenusen- und die Kathetenquadrate mit anderen Puzzleteilen zusammensetzten, um die grafische Darstellung des Satzes von Pythagoras zu bilden. Auch diese Arbeitsphase ist die Grundlage für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler bearbeiten den Auftrag alleine und der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Zur Kontrolle werden danach im öffentlichen Unterricht die Katheten- und Hypotenusenquadrate auf dem Hellraumprojektor (mit den Puzzleteilen) hingelegt. Dabei lösen sich verschiedene Schülerinnen und Schüler ab. Zum Schluss der Stunde überträgt ein Schüler zur visuellen Unterstützung die Linien der Puzzleteile auf eine zweite grafische Darstellung an der Wandtafel. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A14-P-1126-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der Doppellektion gibt die Lehrperson bekannt, dass sie mit dem Thema „Geometrische Sätze“ weiterfahren möchte. Im Anschluss an die Bekanntgabe des Themas hängt sie ein Plaka...    mehr

    Zu Beginn der Doppellektion gibt die Lehrperson bekannt, dass sie mit dem Thema „Geometrische Sätze“ weiterfahren möchte. Im Anschluss an die Bekanntgabe des Themas hängt sie ein Plakat an die Wandtafel mit der Darstellung eines rechtwinkligen Dreiecks und den Quadraten über den Dreiecksseiten. Die Quadratflächen sind mit lauter gleich großen und quadratischen Schokoladenstückchen beklebt. Die Lehrperson fordert die Schülerinnen und Schüler auf, anhand der Darstellung zu entdecken, was der Satz von Pythagoras wohl aussagt. Gemeinsam finden sie heraus, dass die Quadrate über den Katheten zusammen gleich groß sein müssen wie das Quadrat über der Hypotenuse und dass der Satz nur in rechtwinkligen Dreiecken Gültigkeit hat. Nachdem eine Schülerin den Satz nochmals allgemein formuliert hat, gibt die Lehrperson folgenden Auftrag: Die Schülerinnen und Schüler sollen selbständig den Satz für sich formulieren und aufschreiben und mit einer entsprechenden Skizze ergänzen. Danach fordert die Lehrperson einige der Lernenden auf, ihre Formulierungen laut vorzutragen. Eine richtige Formulierung des Satzes schreibt die Lehrperson an die Wandtafel. Dann beschriften sie noch die Flächen der Skizze und schreiben den Satz von Pythagoras in Kurzform dazu. Anhand der Darstellung auf dem Plakat an der Wandtafel, erarbeiten sie gemeinsam eine erste Aufgabe, indem sie die entsprechenden Zahlen (Schokoladenquadrate) in die Kurzform einsetzen. Danach lösen sie ebenfalls im Klassenverband eine Aufgabe zur Berechnung der Hypotenuse, gegeben sind die beiden Katheten. Eine weitere ähnliche Aufgabe wird gelöst, diesmal soll mit Hilfe der Formel eine der Katheten berechnet werden. Anschließend lösen sie im Buch zwei Aufgaben zum Erkennen von rechtwinkligen Dreiecken. Die Schülerinnen und Schüler formulieren für alle gut hörbar die Zusammenhänge zwischen den Seitenlängen. Im Anschluss daran, erarbeitet die Lehrperson zusammen mit den Lernenden eine neue Aufgabe. Die Aufgabe besteht aus sechs ähnlichen unabhängigen Berechnungsaufgaben. Es handelt sich um rechtwinklige Dreiecke, in denen jeweils zwei Dreiecksseiten und der Ort des rechten Winkels gegeben sind. Zusammen erstellen sie die Skizze zur ersten Teilaufgabe. Die Schülerinnen und Schüler sollen mit den erarbeiteten Angaben selber die fehlende Seite berechnen. Danach kontrollieren sie gemeinsam das Ergebnis, indem sie den Lösungsweg an die Wandtafel schreiben. Im Anschluss daran sollen die Schülerinnen und Schüler selbständig drei weitere Teilaufgaben in ihr Heft lösen. Während der Einzelarbeit gibt die Lehrperson für diejenigen, welche bereits fertig sind, die beiden letzten Teilaufgaben zum Lösen. Bevor sie Pause machen, kontrollieren sie noch die ersten drei Ergebnisse, indem sie die Hypotenuse und das Resultat nennen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A18-P-1222-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Informationen ruft sich die Klasse ein Verfahren ins Gedächtnis, mit dem sie gelernt hat die Wurzel aus zwei zu konstruieren. Anschließend sollen die Sc...    mehr

    Nach einigen organisatorischen Informationen ruft sich die Klasse ein Verfahren ins Gedächtnis, mit dem sie gelernt hat die Wurzel aus zwei zu konstruieren. Anschließend sollen die Schülerinnen und Schüler zu zweit versuchen die Wurzel aus drei zu konstruieren. Nach fünf Minuten präsentieren die Schülerinnen und Schüler ihre Lösungsvorschläge an der Wandtafel. Wie erwartet, kam niemand auf einen befriedigenden Lösungsweg. Um ein Verfahren zu erarbeiten, wie also die Wurzel aus einer beliebigen Zahl konstruiert werden kann, verwandelt die Lehrperson an der Wandtafel als erstes ein Quadrat in ein Rechteck, von dem eine Seite gegeben ist. Dabei bezieht sie die Schülerinnen und Schüler in ein Lehr-Lerngespräch ein. Die Lehrperson unterbricht die Konstruktion, nachdem sie das Quadrat in ein Parallelogramm umgewandelt hat, damit die Schülerinnen und Schüler die Konstruktion so weit in ihr Theorieheft übernehmen können. Anschließend wird die Konstruktion an der Wandtafel zu Ende geführt. Als letztes werden die Flächen des Ausgangsquadrates und des entstandenen Rechtecks berechnet und verglichen. Nun will die Lehrperson auf die gleiche Weise ein Rechteck in ein Quadrat verwandeln, unterbricht den Unterricht aber für eine kleine Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A20-P-1225-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbr...    mehr

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbrink einen Landtausch an. Zwei kleine quadratische Felder sollen in ein angrenzendes großes quadratisches Feld umgetauscht werden. Der Bauer weiß nicht recht, ob er dem Handel zustimmen soll, doch seine Nichte berechnet die Flächen der Felder und rät ihrem Onkel auf den Tausch einzusteigen. Von dem Handel erzählt Bauer Piepenbrink am Stammtisch. Seine zwei Kollegen, Bauer Plattfuß und Bauer Großmaul, wollen daraufhin auch zwei kleine quadratische Felder in ein großes quadratisches Feld umtauschen. Die Lehrperson teilt die Pläne, wie die Felder der Bauern liegen an die Schüler aus. Jede Gruppe bearbeitet eine Felderkombination. Sie sollen herausfinden, ob sich der Tausch für "ihren" Bauern lohnt. Bei Bauer Piebenbrink bilden die Felderquadrate, die an den Ecken zusammenstossen in der Mitte einen Leerraum in Form eines rechtwinkligen Dreiecks, bei Bauer Plattfuß ein stumpfwinkliges, bei Bauer Großmaul ein spitzwinkliges Dreieck. Die Schülergruppen präsentieren ihre Erkenntnisse. Sie haben festgestellt, dass bei Bauer Piepenbrink die Flächen der kleinen Quadrate zusammen die Fläche des großen Quadrates ergibt, bei Bauer Plattfuss das große Quadrat größer und bei Bauer Großmaul kleiner, als die Flächen der beiden kleinen Quadrate zusammen. Ein Schüler, der Bauer Piepenbrinks Felder bearbeitet hat, vermutet, dass die Flächengleichheit mit dem rechtwinkligen Dreieck zwischen den Feldern zu tun hat. So kommt die ganze Klasse auf die Dreiecke zwischen den Feldern zu sprechen, und stellt fest, dass bei den Quadraten, die um das rechtwinklige Dreieck angeordnet sind, die Flächen der beiden kleineren zusammen die Fläche des größeren ergeben. Da nun scheinbar oft von rechtwinkligen Dreiecken gesprochen wird, führt die Lehrperson die Bezeichnungen im rechtwinkligen Dreieck ein. Mit den neu erlernten Begriffen versuchen die Schülerinnen und Schüler im Plenum ihre Erkenntnisse bezüglich der Quadrate über den Dreiecksseiten in einem Satz zu formulieren. Schließlich wird eine befriedigende Formulierung gefunden. Diese schreiben die Schülerinnen und Schüler in ihre Theorieblätter. Anschließend überprüfen sie den behaupteten Satz selbständig an einigen Übungsaufgaben aus dem Buch. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B03-P-2103-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will wissen, ob jemand Pythagoras und dessen berühmten Satz kennt. Nachdem eine Schülerin diesen genannt hat, ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will wissen, ob jemand Pythagoras und dessen berühmten Satz kennt. Nachdem eine Schülerin diesen genannt hat, erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schüler in einem Klassengespräch die Grundprinzipien des Satzes. Sie hält die erarbeitete Theorie fortlaufend in einer grafischen Darstellung an der Wandtafel fest. Indem die Lehrperson die Quadrate über den Dreiecksseiten zeichnet, veranschaulicht sie auf geometrische Weise a2+b2=c2. Danach führt die Lehrperson wiederum in einem fragend-entwickelnden Klassengespräch einen algebraischen Beweis durch. Danach verteilt die Lehrperson ein Merkblatt, welches von den Schülerinnen und Schülern noch fertig bearbeitet werden muss. Die Schülerinnen und Schüler übernehmen dabei das neu Gelernte auf ihr Blatt. Im Anschluss an die Einzelarbeit erarbeitet die Lehrperson zusammen mit den Lernenden die allgemeine Formulierung des Satzes. Danach wird gemeinsam die Lösungsprozedur dreier verschiedener Aufgaben, welche in dieser Form noch nicht bearbeitet wurden, gelöst. Es handelt sich um zwei Konstruktionsaufgaben, in denen ein Quadrat mit einem bestimmten Flächeninhalt konstruiert werden soll und um eine Berechnungsaufgabe, wo es um die Berechnung einer Seite im rechtwinkligen Dreieck geht. Fünf Minuten vor Schluss haben die Lernenden noch Gelegenheit, selber einen weiteren Beweis, einen Zerlegungsbeweis, handelnd zu entdecken. (Projekt)     weniger

  • Satzgruppe des Pythagoras (B06-P-2106-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreibe...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreiben und die aufgeschriebenen Aufträge dann auch ausführen: Sie sollen sechs Quadrate, die die Seitenlängen von zwei pythagoräischen Zahlentripeln aufweisen, ausschneiden, die zusammengehörenden zu Pythagorasfiguren zusammenlegen und ihre Beobachtungen dazu schriftlich festhalten. Während die Schülerinnen und Schüler die Aufträge zur Exploration des Satzes von Pythagoras der Reihe nach ausführen, erklärt die Lehrperson, was mit „zu einem Dreieck zusammenlegen“ gemeint ist, eben die Pythagorasfigur legen. Schließlich geht die Lehrperson den Aufgabenkatalog Punkt für Punkt durch, die Schüler geben ihre Beobachtungen an die Klasse weiter. Da der Satz des Pythagoras bei einigen Schülern schon bekannt ist, kommt dieser als Beobachtung bald zur Sprache. An dieser Stelle erklärt die Lehrperson, was der Satz des Pythagoras ist. Danach wird ein weiterer Punkt aus dem Katalog besprochen, was die Lehrperson dazu verleitet, der Klasse etwas über den Mathematiker und Philosophen Pythagoras aus dem Lexikon vorzulesen. Schließlich wird der letzte Punkt besprochen: Weitere Dreiecke suchen, von denen die Summe zweier Seitenquadrate das Quadrat der dritten ergibt. Danach sollen die Schüler selbständig einen Eintrag in ihr Theorieheft machen. Bevor der Film zu Ende ist, beginnt die Lehrperson den Beweis an Hand des Kathetensatzes vorzuzeigen. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation