DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: EINFUEHRUNG (Filter: Schlagwörter)
VERGLEICH (Filter: Schlagwörter)

Anzahl der Treffer: 3
Filtern nach:
     1     
  • Satzgruppe des Pythagoras (A12-P-1119-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die ...    mehr

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die Klasse die Seiten des Rechtecks und dessen Fläche sowie die Fläche der zwei Dreiecke. Nun leitet die Lehrperson die Schülerinnen und Schüler an, beim nächsten Auftrag genau so vorzugehen. Einmal sollen die Schülerinnen und Schüler von der Gesamtfläche der Figur und einmal von den Teilflächen der Figur ausgehen, um den Flächeninhalt eines Quadrates zu berechnen. Das Quadrat soll von vier kongruenten Dreiecken gebildet werden, wobei das Quadrat nicht notwendig vollständig ausgefüllt sein muss. Nach der zweifachen Berechnung des Flächeninhaltes, sollen die Schülerinnen und Schüler ihre Beobachtungen notieren. In er darauf folgenden Schülerarbeitsphase arbeiten die Schülerinnen und Schüler selbständig entdeckend. Danach werden in der Klasse die Resultate besprochen. Zuerst stellt eine Schülergruppe ihren Lösungsweg am Hellraumprojektor und an der Wandtafel vor, die Klasse und die Lehrperson ergänzen ihren Lösungsweg. Ein zweiter Lösungsweg wird von einer Schülerin am Hellraumprojektor mit Figuren gelegt. Den Lösungsweg schreibt sie an die Wandtafel. Der Lösungsweg wird durch Mitschülerinnen und Mitschüler unter Führung der Lehrperson ergänzt. Auch diese Gleichung wird aufgelöst. Bei beiden Flächengleichsetzungen ergibt sich die Lösung a2 + b2 = c2 . Nun stellt die Lehrperson die Frage, ob diese Formel für alle Dreiecke gelte. Die Lehrperson zeigt nun der Klasse mehrmals die Umwandlung der grafischen Darstellung des algebraischen Beweises zur Darstellung des Satzes von Pythagoras. Dadurch will die Lehrperson den Schülerinnen und Schülern zeigen, dass der Satz nur in rechtwinkligen Dreiecken gilt. Dies formulieren die Schülerinnen und Schüler auch gegen Ende dieser Phase. Darauf zeigt die Lehrperson an der Wandtafel, mit Unterstützung der Klasse, wie man ein rechtwinkliges Dreieck konstruiert. Zum Schluss der Stunde instruiert die Lehrperson die Klasse, wie die Seiten beschriftet werden, und dass die zwei kürzeren Seiten eines rechtwinkligen Dreiecks Katheten und die längere Seite Hypotenuse genannt wird. Danach ist Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A20-P-1225-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbr...    mehr

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbrink einen Landtausch an. Zwei kleine quadratische Felder sollen in ein angrenzendes großes quadratisches Feld umgetauscht werden. Der Bauer weiß nicht recht, ob er dem Handel zustimmen soll, doch seine Nichte berechnet die Flächen der Felder und rät ihrem Onkel auf den Tausch einzusteigen. Von dem Handel erzählt Bauer Piepenbrink am Stammtisch. Seine zwei Kollegen, Bauer Plattfuß und Bauer Großmaul, wollen daraufhin auch zwei kleine quadratische Felder in ein großes quadratisches Feld umtauschen. Die Lehrperson teilt die Pläne, wie die Felder der Bauern liegen an die Schüler aus. Jede Gruppe bearbeitet eine Felderkombination. Sie sollen herausfinden, ob sich der Tausch für "ihren" Bauern lohnt. Bei Bauer Piebenbrink bilden die Felderquadrate, die an den Ecken zusammenstossen in der Mitte einen Leerraum in Form eines rechtwinkligen Dreiecks, bei Bauer Plattfuß ein stumpfwinkliges, bei Bauer Großmaul ein spitzwinkliges Dreieck. Die Schülergruppen präsentieren ihre Erkenntnisse. Sie haben festgestellt, dass bei Bauer Piepenbrink die Flächen der kleinen Quadrate zusammen die Fläche des großen Quadrates ergibt, bei Bauer Plattfuss das große Quadrat größer und bei Bauer Großmaul kleiner, als die Flächen der beiden kleinen Quadrate zusammen. Ein Schüler, der Bauer Piepenbrinks Felder bearbeitet hat, vermutet, dass die Flächengleichheit mit dem rechtwinkligen Dreieck zwischen den Feldern zu tun hat. So kommt die ganze Klasse auf die Dreiecke zwischen den Feldern zu sprechen, und stellt fest, dass bei den Quadraten, die um das rechtwinklige Dreieck angeordnet sind, die Flächen der beiden kleineren zusammen die Fläche des größeren ergeben. Da nun scheinbar oft von rechtwinkligen Dreiecken gesprochen wird, führt die Lehrperson die Bezeichnungen im rechtwinkligen Dreieck ein. Mit den neu erlernten Begriffen versuchen die Schülerinnen und Schüler im Plenum ihre Erkenntnisse bezüglich der Quadrate über den Dreiecksseiten in einem Satz zu formulieren. Schließlich wird eine befriedigende Formulierung gefunden. Diese schreiben die Schülerinnen und Schüler in ihre Theorieblätter. Anschließend überprüfen sie den behaupteten Satz selbständig an einigen Übungsaufgaben aus dem Buch. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    mehr

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation