DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: EINFUEHRUNG (Filter: Schlagwörter)
"SCHUELERARBEIT (GRUPPENARBEIT)" (Filter: Sozialform)

Anzahl der Treffer: 11
  • Satzgruppe des Pythagoras (A04-P-1106-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue...    mehr

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue Quadrate (entsprechen a2, b2) und ein grünes (entspricht c2) Quadrat. Der Auftrag dazu lautet: Vergleiche die grünen und die zwei blauen Flächen (=Grundlage für Ergänzungsbeweis). Das wird zuerst gemeinsam in der Klasse besprochen. Dabei äußern die Schülerinnen und Schüler verschiedene Vermutungen, welche Figur größer ist. In der Folge leitet die Lehrperson die Schülerinnen und Schüler an, diese Vermutungen zu überprüfen und zu begründen oder zu beweisen. Daraufhin schieben die Schülerinnen und Schüler ihre Tische zu Gruppentischen zusammen (jeweils vier bis fünf Schülerinnen und Schüler). Danach verteilt die Lehrperson Arbeitsblätter, auf denen dieselben Quadrate abgebildet sind. Die Schülerinnen und Schüler arbeiten nun in ihren Gruppen selbständig entdeckend, wobei sie die Quadrate ausschneiden/ zerschneiden oder indem sie berechnen können. Die Lehrperson unterbricht diese Sequenz und nun sammelt die Klasse die Gruppenergebnisse. Diese werden jeweils von einer Gruppe vorgestellt und die Lehrperson schreibt die Ergebnisse an die Wandtafel. Die Klasse einigt sich mehr oder weniger darauf, dass die Flächen mit Einbezug von Messungenauigkeiten gleich groß sind. Danach stellt die Lehrperson den Beginn eines mathematischen Lösungsweges einer der fünf Gruppen vor. Dieser Lösungsweg entspricht dem Ergänzungsbeweis. Die Lehrperson leitet die Gruppen nun dazu an, die zwei Flächen c2+ vier Dreiecke und a2+ b2+ vier Dreiecke zu berechnen und zu vergleichen. In der Klasse wird aufgrund von Schwierigkeiten einzelner Schülerinnen und Schüler das Vorgehen schrittweise besprochen und von Schülerinnen und Schülern erklärt. Die Lösungen berechnen die Schülerinnen und Schüler in Vierer- oder Fünfergruppen. Die Gruppenarbeit wird durch eine Pause unterbrochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A07-P-1110-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden zu versorgen. Danach findet der eigentliche Unterrichtseinsti...    mehr

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden zu versorgen. Danach findet der eigentliche Unterrichtseinstieg statt. Die Lehrperson hält eine zusammengeknotete Schnur in der Hand und sagt der Klasse, dass sie sich diese Stunde mit einer solchen Schnur beschäftigen werden. In einem fragend-entwickelnden Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler, wozu eine zusammengeknüpfte Schnur, überhaupt gebraucht werden kann. Darauf verteilt die Lehrperson je eine Schnur pro Gruppentisch. Währenddem erzählt sie, wozu die Ägypter die Seile verwendeten. Die Klasse benennt danach das Spezielle, das diesen zusammengeknüpften Schnüren gemeinsam ist. Als nächstes verteilt die Lehrperson ein Arbeitsblatt. Anhand von fünf Aufträgen werden die Schülerinnen und Schüler zur Beschäftigung mit den Schnurabschnitten angeleitet. Sie arbeiten selbständig explorativ in dreier oder vierer Gruppen an ihren Gruppentischen. Die Lernenden bilden dabei zuerst ein rechtwinkliges Dreieck. Danach bestimmen sie die einzelnen Seitenlängen des Schnurdreiecks und bestimmen, wo sich der rechte Winkel im Dreieck befindet. Dies versuchen sie in Worten schriftlich zu erklären. Zum Schluss schreiben sie sich Fragen auf, die sich stellten. Die Ergebnisse werden gemeinsam ausgewertet. Dabei schreibt die Lehrperson alle drei Seitenlängen der verschiedenen Gruppenseile an die Wandtafel. Nachdem die Lage des rechten Winkels besprochen wurde, wird in einem fragend-entwickelnden Lehrgespräch die Beschriftung des rechten Winkels und die Benennung der längsten und der beiden kürzeren Seiten im rechtwinkligen Dreieck (Hypotenuse, Katheten) geklärt. Danach leitet die Lehrperson die Lernenden an, die neu gelernten Bezeichnungen der Seiten in ihr Heft zum Dreieck, das sie zuvor in der Gruppenarbeit in ihr Heft gezeichnet hatten, zu notieren. Die Notizen werden darauf von den Schülerinnen und Schülern in Einzelarbeit in ihr Heft übernommen. Nach der Stillarbeit bestimmt die Klasse im öffentlichen Unterrichtsgespräch die Hypotenusen und Katheten der Schnurdreiecke anhand der Längenmaße an der Wandtafel. Die Lehrperson notiert dies an die Wandtafel. Zum Schluss der Stunde schreibt die Lehrperson Fragen, die sich bei der Gruppenarbeit gestellt haben, ebenso an die Wandtafel. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A09-P-1114-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des...    mehr

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des Satzes von Pythagoras damit ein, dass sie den Schülerinnen und Schülern sagt, dass sie heute ein Phänomen kennenlernen, mit dem sich die Ägypter schon beschäftigt haben. Anhand eines Bildes von ägyptischen Pyramiden sollen die Schülerinnen und Schüler in der Klasse überlegen, wie im Wüstensand die Grundfläche der Pyramide wohl rechtwinklig abgesteckt werden könnte. Die Schülerinnen und Schüler äußern verschiedene, jedoch unbrauchbare Ideen zur Lösung dieses Problems. Schließlich teilt die Lehrperson vorbereitete Knotenschnüre an Schülergruppen aus. In diesen Gruppen sollen die Schülerinnen und Schüler nun selbständig herausfinden, wie mit Hilfe einer solchen Schnur ein rechter Winkel gelegt werden kann. Dank anregender Tipps der Lehrperson gelingt es schließlich allen Gruppen ein rechtwinkliges Dreieck mit den Seitenverhältnissen drei, vier, fünf zu legen. Anschließend wird die Lösung kurz an der Wandtafel dargestellt. Nachdem die Begriffe Kathete und Hypotenuse wieder ins Gedächtnis gerufen wurden, versucht die Klasse hinter den Zusammenhang der drei Zahlen drei, vier und fünf zu kommen. Im Plenum werden verschiedene Rechenoperationen getestet, auch das Quadrieren. Dabei wird die These aufgestellt, dass die Summe der Flächen der beiden Kathetenquadrate die Fläche des Hypotenusenquadrates ergibt. Zu dieser Annahme sollen die Schülerinnen und Schüler bis zur Pause selbständig weitere ganzzahlige Beispiele suchen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A10-P-1117-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearb...    mehr

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearbeitet wird und sie nur eine zweiminütige Pause machen werden. Darauf wechselt die Lehrperson ins Englische und zeigt der Klasse einen Comic am Hellraumprojektor mit englischen Sprechblasen. Dies ist der Beginn einer zum größten Teil problemorientierten Lektion. Bei diesem Comic fragt ein Ameisenkind seinen Vater, ob es eine dumme Frage stellen dürfe. Der Vater bejaht dies ebenso auf dem ersten Bild und antwortet, dass man nur über dumme Fragen etwas lernen könne. So stellt also das Ameisenkind auf dem zweiten Bild seine Frage: „Why is the square of the hypotenus equal to the sum of the squares of the two other sides?“ Auf dem dritten Bild antwortet nun der Ameisenvater, diese Frage sei nicht blöd genug. Nun teilt die Lehrperson Auftragsblätter aus, auf welche der Comic kopiert ist und gibt den Schülerinnen und Schülern den Auftrag, den Comic zuerst in Einzelarbeit zu übersetzen und danach in Partnerarbeit zu besprechen. In der Partnerarbeit soll dabei die Frage besprochen werden, welche Aussage in der Frage des Ameisenkindes steckt. Diese zwei Aufträge stehen unterhalb des Comics auf dem Auftragsblatt. Insgesamt sind sechs Aufträge/ Themenbereiche auf diesem Arbeitsblatt notiert, welche als Programm für die nächsten drei Lektionen dienen werden. Danach arbeiten die Schülerinnen und Schüler in Einzelarbeit an der Übersetzung. Die Schülerinnen und Schüler tauschen sich dabei auch aus. Gemeinsam werden in der Klasse darauf die einzelnen Sprechblasen übersetzt. Nach dieser öffentlichen Sequenz leitet die Lehrperson über zum zweiten Auftrag und sagt, dass sie sich mit der Frage des Ameisenkindes in den nächsten Stunden beschäftigen werden. Nun übersetzen die Schülerinnen und Schüler die Frage des Ameisenkindes und die Lehrperson schreibt die Übersetzung an die Wandtafel: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Nun klärt die Klasse Begriffe dieser deutschen Übersetzung (Hypotenuse, äquivalent). Die Lehrperson informiert die Schülerinnen und Schüler darauf über das weitere Programm in den drei Lektionen und verweist dabei auf das Auftragsblatt, das die Schülerinnen und Schüler zur Hand nehmen. Die Lehrperson gibt nun den Auftrag zur Bearbeitung der nächsten Aufgabe. Es geht dabei um die Überprüfung der Frage des Ameisenkindes: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Dazu erhalten die Schülerinnen und Schüler ein Bearbeitungsblatt von der Lehrperson. Nun arbeiten die Schülerinnen und Schüler in dreier oder vierer Gruppen an ihren Gruppentischen selbständig entdeckend. Nach der Gruppenarbeit werden in einer öffentlichen Phase die Figuren des Bearbeitungsblattes besprochen. Bei diesen drei Figuren handelt es sich um die Darstellung von Dreiecken und der Quadrierung ihrer jeweiligen Seiten. Ein Dreieck ist dabei stumpfwinklig, ein anderes spitzwinklig und das dritte Dreieck ist rechtwinklig. Bei der Auswertung stellt die Lehrperson die Frage, weshalb die Aussage einmal stimmt und zweimal nicht, obwohl die drei Seiten der Dreiecke gleich lang sind. Darauf äußert eine Schülerin die Vermutung, dass diese Aussage nur bei rechtwinkligen Dreiecken zutrifft. Die Lehrperson nimmt diese Aussage auf und die Schülerinnen und Schüler überprüfen diese Vermutung, indem sie in ihre Bearbeitungsblätter drei Falze machen, wodurch rechtwinklige Dreiecke entstehen. Diese messen sie und berechnen, ob diese Aussage zutrifft. Da die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras kennen, ist das als einfache Aufgabe einzustufen. Im öffentlichen Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler danach, dass ihre Ergebnisse ungefähr stimmen und die Lehrperson erläutert die Berechnungsungenauigkeiten in Folge des Messens. Zur Bestätigung ihrer Vermutung (dass das Quadrat der Hypotenuse äquivalent ist zu der Summe der Quadrate der zwei anderen Seiten, wenn das Dreieck rechtwinklig ist) zeigt die Lehrperson am Hellraumprojektor eine Folie, auf der der Satz des Pythagoras mit Schokoladentäfelchen dargestellt wird. Danach übernehmen die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras auf ihr Auftragsblatt. Später fasst ein Schüler zusammen, was bisher in dieser Stunde behandelt wurde und äußert, dass nun die Allgemeingültigkeit dieser erarbeiteten Aussage bewiesen werden müsse. Dies bestätigt die Lehrperson. Vor einer kurzen Pause führt die Lehrperson noch kurz in den nächsten Arbeitsauftrag ein, welcher nach der Pause gelöst werden soll. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A11-P-1118-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Geme...    mehr

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Gemeinde bittet Bauer Piepenbrink deshalb, seine zwei quadratischen Felder gegen ein drittes größeres, quadratisches Feld einzutauschen. Sein Sohn, der ebenso wie die Schüler in die neunte Klasse geht, empfiehlt seinem Vater den Tausch. Am Stammtisch unterhält er sich mit zwei anderen Landwirten, Plattfuß und Grossmaul. Die Tochter des Bauern Plattfuß geht auch in die neunte Klasse und empfiehlt auch ihrem Vater seine zwei quadratischen Felder gegen ein grösseres quadratisches Feld einzutauschen. Ebenso will es der Bauer Großmaul machen. An der Wandtafel wird die jeweilige Planskizze der drei Felder aufgehängt. Die Lehrperson hat auf aufwendige Art die Gruppeneinteilung vorbereitet. Nun versuchen die Schülerinnen und Schüler in 6 Gruppen (à 3 bis 4 Lernende) selbständig herauszufinden, ob sich der Feldertausch für den ihnen zugeteilten Bauern wirklich lohnt und weshalb. Dabei arbeiten die Lernenden mit der ihnen bekannten Maßstabsvergrösserung und der Flächenberechnung von Quadraten. In der nächsten Arbeitsphase tauschen sich jeweils zwei Gruppen aus, die den Feldertausch desselben Bauern bearbeitet haben. Anschließend stellen je zwei Schülerinnen und Schüler der Expertengruppen an der Wandtafel vor, wie sie das Problem gelöst haben. Die Lehrperson leitet mit der Frage, warum nun der eine Landwirt ein kleineres, gleichgroßes oder größeres Feld erhält, (obwohl alle kleineren Felder der Bauern gleich gross sind), zur Erarbeitung des Satzes von Pythagoras über. So kommen die Schülerinnen und Schüler im folgenden entwickelnden Lehr- und Lerngespräch einerseits auf die Dreiecke und deren Winkel zu sprechen, die von den Feldern von Großmaul (spitzwinklig), Piepenbrink (rechtwinklig) und Plattfuß (stumpfwinklig) umgeben sind. Andererseits fordert die Lehrperson die Schülerinnen und Schüler auf, eine Regel für das rechtwinklige Dreieck zu finden. Die Lernenden tragen wichtige Details zusammen und vor der Pause formuliert die Lehrperson den Satz des Pythagoras in Worten und hält ihn an der Wandtafel fest. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A16-P-1208-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll ein...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll eine Umfahrungsstraße gebaut werden. Da zwei quadratische Felder des Bauern Piepenbrink genau in der Bebauungszone liegen, will ihm die Gemeinde dafür ein einziges größeres quadratisches Feld überlassen. Die Lehrperson legt eine Folie auf den Hellraumprojektor, auf der zu sehen ist, wie die Felder liegen: Sie bilden die Pythagorasfigur. Eine Schülerin misst und berechnet die Quadratflächen und stellt fest, dass die kleinen Quadrate miteinander den selben Flächeninhalt haben, wie das große. Dann liest die Lehrperson weiter aus der Geschichte vor: Bauer Piepenbrink ist zufrieden mit dem Tausch und erzählt davon am Stammtisch. Seine beiden Kollegen, Bauer Plattfuss und Bauer Grossmaul, besitzen ähnliche quadratische Felder und wollen die auch gegen ein einziges großes Feld eintauschen. Nun sehen die Schülerinnen und Schüler an der Leinwand zuerst die Felder von Bauer Plattfuss: Die drei Quadrate sind um ein stumpfwinkliges Dreieck angeordnet. Wieder werden die Flächen der Quadrate berechnet und festgestellt, dass die Fläche des großen Quadrats größer ist als die der beiden kleinen Quadrate zusammen. Auch die Felder von Bauer Grossmaul werden vermessen und ihre Flächen berechnet. Da bei ihm die Felder um ein spitzwinkliges Dreieck angeordnet sind, ist die Fläche der beiden kleineren Quadrate zusammen natürlich größer als die des großen Quadrats. Die Lehrperson teilt die drei Pläne an die Schülerinnen und Schüler aus, die nun in Gruppen darüber beraten sollen, woran es liegt, dass sich beim einen Bauer der Tausch lohnt und beim andern nicht, denn bis jetzt haben sich die Schülerinnen und Schüler ausschließlich mit den Quadraten und nicht mit den eingeschlossenen Dreiecken beschäftigt. Nach angeregten Diskussionen sammelt die Lehrperson die Erkenntnisse der Schülerinnen und Schüler im Plenum. Den meisten Schülerinnen und Schüler ist aufgefallen, dass das Dreieck zwischen den Feldern des Bauern Piepenbrink rechtwinklig ist und dass darum die Flächen der beiden kleinen Feldern zusammen gleich groß sein könnten, wie die Fläche des angrenzenden großen quadratischen Feldes. Um diese Erkenntnis zu überprüfen, messen und vergleichen die Schülerinnen und Schüler selbständig verschiedene rechtwinklige Dreiecke, die auf einem von der Lehrperson ausgeteilten Blatt abgebildet sind. Vor der Pause bespricht die Lehrperson mit der Klasse, ob durch das Messen und Berechnen die Erkenntnisse, nämlich dass die Quadrate über den Katheten zusammen gleich groß sind, wie das Hypotenusenquadrat, bzw. dass wenn eine Quadratfläche die selbe Fläche hat, wie die Flächen zwei anderer Quadrate zusammen, die eingeschlossene Figur ein rechtwinkliges Dreieck sein muss, die aus der Piepnbrink-Geschichte hervorgegangen sind, bekräftigt wurden und fasst die Erkenntnis, dass also in einem rechtwinkligen Dreieck die Summe der Flächen der Kathetenquadraten gleich der Flächen des Hypotenusenquadrats ist, noch einmal zusammen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A20-P-1225-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbr...    mehr

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbrink einen Landtausch an. Zwei kleine quadratische Felder sollen in ein angrenzendes großes quadratisches Feld umgetauscht werden. Der Bauer weiß nicht recht, ob er dem Handel zustimmen soll, doch seine Nichte berechnet die Flächen der Felder und rät ihrem Onkel auf den Tausch einzusteigen. Von dem Handel erzählt Bauer Piepenbrink am Stammtisch. Seine zwei Kollegen, Bauer Plattfuß und Bauer Großmaul, wollen daraufhin auch zwei kleine quadratische Felder in ein großes quadratisches Feld umtauschen. Die Lehrperson teilt die Pläne, wie die Felder der Bauern liegen an die Schüler aus. Jede Gruppe bearbeitet eine Felderkombination. Sie sollen herausfinden, ob sich der Tausch für "ihren" Bauern lohnt. Bei Bauer Piebenbrink bilden die Felderquadrate, die an den Ecken zusammenstossen in der Mitte einen Leerraum in Form eines rechtwinkligen Dreiecks, bei Bauer Plattfuß ein stumpfwinkliges, bei Bauer Großmaul ein spitzwinkliges Dreieck. Die Schülergruppen präsentieren ihre Erkenntnisse. Sie haben festgestellt, dass bei Bauer Piepenbrink die Flächen der kleinen Quadrate zusammen die Fläche des großen Quadrates ergibt, bei Bauer Plattfuss das große Quadrat größer und bei Bauer Großmaul kleiner, als die Flächen der beiden kleinen Quadrate zusammen. Ein Schüler, der Bauer Piepenbrinks Felder bearbeitet hat, vermutet, dass die Flächengleichheit mit dem rechtwinkligen Dreieck zwischen den Feldern zu tun hat. So kommt die ganze Klasse auf die Dreiecke zwischen den Feldern zu sprechen, und stellt fest, dass bei den Quadraten, die um das rechtwinklige Dreieck angeordnet sind, die Flächen der beiden kleineren zusammen die Fläche des größeren ergeben. Da nun scheinbar oft von rechtwinkligen Dreiecken gesprochen wird, führt die Lehrperson die Bezeichnungen im rechtwinkligen Dreieck ein. Mit den neu erlernten Begriffen versuchen die Schülerinnen und Schüler im Plenum ihre Erkenntnisse bezüglich der Quadrate über den Dreiecksseiten in einem Satz zu formulieren. Schließlich wird eine befriedigende Formulierung gefunden. Diese schreiben die Schülerinnen und Schüler in ihre Theorieblätter. Anschließend überprüfen sie den behaupteten Satz selbständig an einigen Übungsaufgaben aus dem Buch. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B01-P-2101-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler...    mehr

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler spontan. Ausgehend von der Frage wie „draußen auf dem Feld“ im rechten Winkel gebaut werden könne, zeigt die Lehrperson, dass mit einer Schnur ein rechtwinkliges Dreieck entsteht, wenn die Längen der drei Schnurabschnitte im Verhältnis drei, vier und fünf zueinander stehen. Danach fordert die Lehrperson die Schüler und Schülerinnen auf, in Gruppen zu diskutieren und herauszufinden wie die Zahlen der pythagoräischen Zahlentripeln mathematisch zusammenhängen. Dazu wird ein Blatt mit verschiedenen Zahlentripeln abgegeben. An einem Gruppentisch ist der Satz des Pythagoras bereits bekannt. Diese Schülerinnen und Schüler werden nun auf die anderen Gruppen verteilt, um so ihr Wissen an den Rest der Klasse weiterzugeben. Um die Aussagen der Schülerinnen und Schüler zu bestätigen, stellt die Lehrperson den Satz des Pythagoras an der Wandtafel mit einem roten Hypotenusen- und grünen Kathetenquadraten graphisch dar. Danach berechnen die Schülerinnen und Schüler mit dem neu gelernten Satz selbständig die fehlenden Seiten von verschiedenen rechtwinkligen Dreiecken, ohne dass die Lehrperson vorgezeigt hat, wie solche Aufgaben zu lösen sind. Nachdem die Schülerinnen und Schüler Gelegenheit hatten, ihre Resultate zu korrigieren, erhalten sie ein Blatt, auf dem sie die Pythagorasfigur entsprechend der Wandtafeldarstellung anmalen und in ihr Theorieheft einkleben. Danach werden in Stillarbeit weitere Dreiecksseiten berechnet und kontrolliert. Um die Lektion abzurunden, wiederholt die Lehrperson vor der Pause das in dieser Lektion Gelernte. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B08-P-2108-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    In einer längerdauernden öffentlichen problemorientierten Phase (Zahlentripel) wird der Satz des Pythagoras problemorientiert erarbeitet. Zuerst gibt die Lehrperson dazu den Schüleri...    mehr

    In einer längerdauernden öffentlichen problemorientierten Phase (Zahlentripel) wird der Satz des Pythagoras problemorientiert erarbeitet. Zuerst gibt die Lehrperson dazu den Schülerinnen und Schülern den Auftrag, ein rechtwinkliges Dreieck zu zeichnen, dieses zu beschriften und die Seiten zu messen. Danach werden von den Schülerinnen und Schülern die Maße dreier, von ihnen gezeichneter Dreiecke diktiert, und die Lehrperson schreibt die Maße an die Wandtafel. Darauf trägt die Klasse in einem entwickelnden Lehr- und Lerngespräch beobachtbare Zusammenhänge zwischen den Dreieckseiten ihrer gezeichneten rechtwinkligen Dreiecke zusammen. Ergänzend dazu schreibt die Lehrperson das Zahlentripel 3, 4, 5 an die Wandtafel und gibt den Schülerinnen und Schülern den Auftrag die Quadratzahlen der Seitenlängen von ihrem und von diesem Dreieck zu berechnen. Dies geschieht alles in einer öffentlichen Phase und in der Folge des entwickelnden Lehr- und Lerngesprächs wird die Formel des Pythagoras genannt. Diese wird von der Klasse mit den Beispielen an der Wandtafel überprüft. Dabei stellt die Klasse fest, dass aufgrund von Messungen Ungenauigkeiten auftreten. Die Lehrperson äußert dazu, dass die Formel von Pythagoras aber trotzdem als allgemeingültig angenommen werden kann. Die Formel a2+b2 =c2 wird von der Lehrperson an die Wandtafel geschrieben. In der Folge entwickelt die Lehrperson mit der Klasse problemorientiert einen Beweis des Satzes von Pythagoras. Dabei wird zuerst anhand eines entwickelnden Lehr- und Lerngesprächs besprochen, wie die Quadratzahlen grafisch dargestellt werden. Darauf wird die Formel a2+b2 =c2 von den Schülerinnen und Schülern mit ihren Legeformen aus Plastik dargestellt, die Lehrperson zeigt es gleichzeitig am Hellraumprojektor vor. Nun gibt die Lehrperson die Anweisung, aus den vorhandenen Dreiecken und Vierecken zwei deckungsgleiche Vierecke zu bauen. Die zwei deckungsgleichen Vierecke entsprechen der grafischen Darstellung des Ergänzungsbeweises. Da einigen Schülerinnen und Schülern das Material fehlt, arbeiten sie in Gruppen. In der nächsten Phase entwickelt die Lehrperson auf der Basis der gelegten Quadrate den Beweis. Darauf benennt die Lehrperson die Formel als Satz des Pythagoras. Bei der Erläuterung des Arbeitsplans, macht die Lehrperson die Lernenden darauf aufmerksam, dass sie in den nächsten Wochen mit dieser Formel rechnen werden. Die Lehrperson erklärt weitere organisatorische Belange genau: Das selbständige Aufstellen des Zeitrahmens, die Anzahl der Aufgaben, welche von den Lernenden bearbeitet werden und die Arbeitsform (Arbeit in Gruppen). Zum Schluss der Stunde gibt die Lehrperson den Auftrag, einen Theoriehefteintrag zu schreiben. Dafür schreiben die Schülerinnen und Schüler die Anschriften der Wandtafel und einen Teil des Beweises ab und einen anderen Teil des Beweises, den sie auf einem Blatt erhalten haben, kleben sie ins Heft. Wer mit dieser Arbeit nicht fertig wird, macht sie nach der Pause fertig. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B11-P-2111-Lek1)

    Bestandteil von: Videogestützte Unterrichtsstudie / Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papie...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papier. In der Klasse werden - ohne diese schriftlich fest zu halten - kurz die Bezeichnungen im rechtwinkligen Dreieck angesprochen. Danach versuchen die Schülerinnen und Schüler in Gruppen an Hand der vorliegenden Dreiecke Verhältnisregeln, die im rechtwinkligen Dreieck gelten sollen, herauszufinden. Da der Satz des Pythagoras bei einigen Schülerinnen und Schüler bereits bekannt ist, bringen zwei der drei Schülergruppen in einer Sammlungsphase dann auch zur Sprache, dass die Summe der Flächen der Kathetenquadrate der Fläche des Hypotenusenquadrats entspricht. Auf Grund dieser Annahme füllen die Schülerinnen und Schüler eine Tabelle an der Wandtafel mit den Maßen ihrer Dreiecke aus. Mit diesen Berechnungen wird überprüft, dass die Summe der Kathetequadrate der vermessenen Dreiecke ziemlich genau ihren Hypotenusenquadraten entspechen. Anschließend stellt die Lehrperson diese Aussage mit der Pythagorasfigur an der Wandtafel bildlich dar und zeigt dann ein Computerprogramm, das beim Verschieben des rechten Winkels eines rechtwinkligen Dreiecks auf dem Thaleskreis sofort alle Seitenquadrate berechnet. Den mathematischen Beweis des Satzes kündigt die Lehrperson für die nächste Lektion an. Dann legt sie eine Folie auf den Hellraumprojektor, auf der alle wichtigen Aussagen dieses Theorieteils festgehalten sind. Die Schülerinnen und Schüler übernehmen das auf der Folie Beschriebene in ihr Theorieheft. Diejenigen Schülerinnen und Schüler, die mit Abschreiben fertig sind, beginnen selbständig mit einschrittigen Berechnugen von Seiten eines gegebenen rechtwinkligen Dreiecks. Vor dem Ende der Lektion werden die Hausaufgaben - diese ersten vier Dreiecksseiten zu berechnen und eine Vorbereitungsaufgabe für den Beweis der nächsten Lektion - erteilt. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation