DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: EINFUEHRUNG (Filter: Schlagwörter)
KATHETENSATZ (Filter: Schlagwörter)
ERGEBNISSICHERUNG (Filter: Schlagwörter)

Anzahl der Treffer: 2
Filtern nach:
     1     
  • Satzgruppe des Pythagoras (A17-P-1218-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck die üblichen griechischen Bezeichnungen festgelegt und von den Schülerinnen und Schülern in ihr Theorieheft übernommen. Anschließend zeigt die Lehrperson die drei Dreiecke, die entstehen, wenn ein großes rechtwinkliges Dreieck durch die Höhe über der Hypotenuse in zwei kleine Dreiecke unterteilt wird, nebeneinander und behauptet, dass diese ähnlich sind. Auf Grund dieser Aussage nennen die Schülerinnen und Schüler den Ähnlichkeitssatz, der auf diese Behauptung zutrifft und bestätigen so die Aussage der Lehrperson. Auch diese Dreiecke werden von den Schülerinnen und Schülern in ihr Theorieheft übernommen, der Ähnlichkeitssatz dazugeschrieben. Nun stellt die Klasse verschiedene, ausgewählte Verhältnisse zwischen den Seiten der drei Dreiecke auf. Aus diesen Verhältnisgleichungen wird an der Wandtafel der Kathetensatz errechnet und anschließend von der Lehrperson, Schülerinnen und Schülern in Worte gefasst. Alles was neu an der Wandtafel erarbeitet wurde, schreiben und zeichnen die Schülerinnen und Schüler ab. Anschließend nennen die Schülerinnen und Schüler den Kathetensatz für verschiedene vorgegebene rechtwinklige Dreiecke mit unterschiedlichen Seitenbezeichnungen. Schließlich besprechen sie im Plenum, was von einem rechtwinkligen Dreieck ausgerechnet werden kann, wenn die Hypotenuse und ein Hypotenusenabschnitt gegeben ist. In Stillarbeit berechnen die Schülerinnen und Schüler zwei solche Aufgaben, welche vor dem Ende der Lektion in der Klasse besprochen werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A19-P-1223-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dies...    mehr

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dieser Darstellung teilt sie auch an die Schülerinnen und Schüler aus. Ihre Aufgabe ist es, zu zweit den Lösungsweg zur Berechnung der Länge der für die Herstellung eines solchen Daches benötigten Dachsparren zu finden, wenn das Dreieck, das die beiden Dachschrägen und die Parallele zum Boden bilden, im Giebel rechtwinklig ist. Auch die Länge eines solchen Teildaches und der Punkt, wo dieses von der Höhe durch den Giebel geteilt wird, sind den Schülerinnen und Schülern bekannt. Nach etwa zehn Minuten wird im Plenum besprochen, auf was für Lösungsansätze die Schülerinnen und Schüler gekommen sind. Eine Schülerin schlägt vor, das Dreieck zu konstruieren und die Länge der Dachsparren durch Messen zu bestimmen. Auch fällt das Stichwort "Strahlensätze", woran die Lehrperson das weiterführende Lehr-Lerngespräch anknüpft. An der Wandtafel hängt die Lehrperson ein rechtwinkliges Dreieck aus braunem Papier auf und lässt einen Schüler die zwei Teildreiecke aus blauem Papier, die durch das Einzeichnen der Höhe entstünden, exakt darüber hängen. Dieser Schüler ist es auch, der behauptet, alle diese Papierdreiecke seien zueinander ähnlich. Dies wird durch die Lehrperson bestätigt und für die anderen Schülerinnen und Schüler durchsichtig gemacht. Nun hängt die Lehrperson ein weiteres zum braunen Dreieck identisches Papierdreieck an die Wandtafel. Ein Schüler hängt eines der blauen Dreiecke so auf das zweite braune, dass die Klasse sieht, wie der zweite Strahlensatz auf diese beiden Dreiecke angewendet werden kann. Die Lehrperson schreibt alle bekannten Grössen aus der Dachsparrenaufgabe in Zahlen, die unbekannten in Buchstaben auf die beiden Dreiecke. Mit diesen Angaben stellt die Klasse die Verhältnisgleichung auf und rechnet so die eine Kathete des braunen Dreiecks aus. Anschließend schreiben, zeichnen und kleben die Schülerinnen und Schüler den ganzen Lösungsweg von der Wandtafel ab. Dabei überlegen sie sich bereits den Lösungsweg zur Berechnung des anderen Dachsparrens. (Projekt)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation