DE | EN
Logo fdz-Bildung
Search Research data Data of FDZ Bildung: searching

Data collections of FDZ Bildung

You can use individual terms to search the data collections at FDZ Bildung or use the filters to delimit the list of studies available from FDZ Bildung.

 
  • The following contents are searched in the data pool: title, topic, subject taught, abstract and keywords, unit of analysis, type and place of recorded units, title of study and survey.
  • Several search terms are automatically linked by "OR". You can link the words by "AND" if you tick the box "all words".
  • Blank spaces are used to separate search terms.
  • No distinction is made between small and capital letters.
  • Truncating: Search terms are not automatically truncated. You can use a * or % character for this purpose (math* will find mathematics).
  • Search by phrase: An exact combination of search terms can be used. Search terms must be inserted in quotation marks (e.g. "teamwork in lessons ").

reset

Request: ERGEBNISKONTROLLE (Filter: Schlagwörter)
VORBEREITUNG (Filter: Schlagwörter)

Number of results: 5
     1     
  • Satzgruppe des Pythagoras (A10-P-1117-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearb...    more

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearbeitet wird und sie nur eine zweiminütige Pause machen werden. Darauf wechselt die Lehrperson ins Englische und zeigt der Klasse einen Comic am Hellraumprojektor mit englischen Sprechblasen. Dies ist der Beginn einer zum größten Teil problemorientierten Lektion. Bei diesem Comic fragt ein Ameisenkind seinen Vater, ob es eine dumme Frage stellen dürfe. Der Vater bejaht dies ebenso auf dem ersten Bild und antwortet, dass man nur über dumme Fragen etwas lernen könne. So stellt also das Ameisenkind auf dem zweiten Bild seine Frage: „Why is the square of the hypotenus equal to the sum of the squares of the two other sides?“ Auf dem dritten Bild antwortet nun der Ameisenvater, diese Frage sei nicht blöd genug. Nun teilt die Lehrperson Auftragsblätter aus, auf welche der Comic kopiert ist und gibt den Schülerinnen und Schülern den Auftrag, den Comic zuerst in Einzelarbeit zu übersetzen und danach in Partnerarbeit zu besprechen. In der Partnerarbeit soll dabei die Frage besprochen werden, welche Aussage in der Frage des Ameisenkindes steckt. Diese zwei Aufträge stehen unterhalb des Comics auf dem Auftragsblatt. Insgesamt sind sechs Aufträge/ Themenbereiche auf diesem Arbeitsblatt notiert, welche als Programm für die nächsten drei Lektionen dienen werden. Danach arbeiten die Schülerinnen und Schüler in Einzelarbeit an der Übersetzung. Die Schülerinnen und Schüler tauschen sich dabei auch aus. Gemeinsam werden in der Klasse darauf die einzelnen Sprechblasen übersetzt. Nach dieser öffentlichen Sequenz leitet die Lehrperson über zum zweiten Auftrag und sagt, dass sie sich mit der Frage des Ameisenkindes in den nächsten Stunden beschäftigen werden. Nun übersetzen die Schülerinnen und Schüler die Frage des Ameisenkindes und die Lehrperson schreibt die Übersetzung an die Wandtafel: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Nun klärt die Klasse Begriffe dieser deutschen Übersetzung (Hypotenuse, äquivalent). Die Lehrperson informiert die Schülerinnen und Schüler darauf über das weitere Programm in den drei Lektionen und verweist dabei auf das Auftragsblatt, das die Schülerinnen und Schüler zur Hand nehmen. Die Lehrperson gibt nun den Auftrag zur Bearbeitung der nächsten Aufgabe. Es geht dabei um die Überprüfung der Frage des Ameisenkindes: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Dazu erhalten die Schülerinnen und Schüler ein Bearbeitungsblatt von der Lehrperson. Nun arbeiten die Schülerinnen und Schüler in dreier oder vierer Gruppen an ihren Gruppentischen selbständig entdeckend. Nach der Gruppenarbeit werden in einer öffentlichen Phase die Figuren des Bearbeitungsblattes besprochen. Bei diesen drei Figuren handelt es sich um die Darstellung von Dreiecken und der Quadrierung ihrer jeweiligen Seiten. Ein Dreieck ist dabei stumpfwinklig, ein anderes spitzwinklig und das dritte Dreieck ist rechtwinklig. Bei der Auswertung stellt die Lehrperson die Frage, weshalb die Aussage einmal stimmt und zweimal nicht, obwohl die drei Seiten der Dreiecke gleich lang sind. Darauf äußert eine Schülerin die Vermutung, dass diese Aussage nur bei rechtwinkligen Dreiecken zutrifft. Die Lehrperson nimmt diese Aussage auf und die Schülerinnen und Schüler überprüfen diese Vermutung, indem sie in ihre Bearbeitungsblätter drei Falze machen, wodurch rechtwinklige Dreiecke entstehen. Diese messen sie und berechnen, ob diese Aussage zutrifft. Da die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras kennen, ist das als einfache Aufgabe einzustufen. Im öffentlichen Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler danach, dass ihre Ergebnisse ungefähr stimmen und die Lehrperson erläutert die Berechnungsungenauigkeiten in Folge des Messens. Zur Bestätigung ihrer Vermutung (dass das Quadrat der Hypotenuse äquivalent ist zu der Summe der Quadrate der zwei anderen Seiten, wenn das Dreieck rechtwinklig ist) zeigt die Lehrperson am Hellraumprojektor eine Folie, auf der der Satz des Pythagoras mit Schokoladentäfelchen dargestellt wird. Danach übernehmen die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras auf ihr Auftragsblatt. Später fasst ein Schüler zusammen, was bisher in dieser Stunde behandelt wurde und äußert, dass nun die Allgemeingültigkeit dieser erarbeiteten Aussage bewiesen werden müsse. Dies bestätigt die Lehrperson. Vor einer kurzen Pause führt die Lehrperson noch kurz in den nächsten Arbeitsauftrag ein, welcher nach der Pause gelöst werden soll. (Projekt)    less

  • Satzgruppe des Pythagoras (A11-P-1118-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Geme...    more

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Gemeinde bittet Bauer Piepenbrink deshalb, seine zwei quadratischen Felder gegen ein drittes größeres, quadratisches Feld einzutauschen. Sein Sohn, der ebenso wie die Schüler in die neunte Klasse geht, empfiehlt seinem Vater den Tausch. Am Stammtisch unterhält er sich mit zwei anderen Landwirten, Plattfuß und Grossmaul. Die Tochter des Bauern Plattfuß geht auch in die neunte Klasse und empfiehlt auch ihrem Vater seine zwei quadratischen Felder gegen ein grösseres quadratisches Feld einzutauschen. Ebenso will es der Bauer Großmaul machen. An der Wandtafel wird die jeweilige Planskizze der drei Felder aufgehängt. Die Lehrperson hat auf aufwendige Art die Gruppeneinteilung vorbereitet. Nun versuchen die Schülerinnen und Schüler in 6 Gruppen (à 3 bis 4 Lernende) selbständig herauszufinden, ob sich der Feldertausch für den ihnen zugeteilten Bauern wirklich lohnt und weshalb. Dabei arbeiten die Lernenden mit der ihnen bekannten Maßstabsvergrösserung und der Flächenberechnung von Quadraten. In der nächsten Arbeitsphase tauschen sich jeweils zwei Gruppen aus, die den Feldertausch desselben Bauern bearbeitet haben. Anschließend stellen je zwei Schülerinnen und Schüler der Expertengruppen an der Wandtafel vor, wie sie das Problem gelöst haben. Die Lehrperson leitet mit der Frage, warum nun der eine Landwirt ein kleineres, gleichgroßes oder größeres Feld erhält, (obwohl alle kleineren Felder der Bauern gleich gross sind), zur Erarbeitung des Satzes von Pythagoras über. So kommen die Schülerinnen und Schüler im folgenden entwickelnden Lehr- und Lerngespräch einerseits auf die Dreiecke und deren Winkel zu sprechen, die von den Feldern von Großmaul (spitzwinklig), Piepenbrink (rechtwinklig) und Plattfuß (stumpfwinklig) umgeben sind. Andererseits fordert die Lehrperson die Schülerinnen und Schüler auf, eine Regel für das rechtwinklige Dreieck zu finden. Die Lernenden tragen wichtige Details zusammen und vor der Pause formuliert die Lehrperson den Satz des Pythagoras in Worten und hält ihn an der Wandtafel fest. (Projekt)     less

  • Satzgruppe des Pythagoras (A13-P-1120-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vo...    more

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vorstellt und seine Erkenntnisse erklärt. Danach bittet die Lehrperson die Klasse, eine Skizze mit der Aussage des Pythagoras an die Wandtafel zu machen. Eine Schülerin skizziert darauf ein rechtwinkliges Dreieck an die Wandtafel, bezeichnet Katheten und Hypotenuse und ergänzt die Skizze des rechtwinkligen Dreiecks zur grafischen Darstellung des Satzes von Pythagoras, indem sie die Flächenquadrate über den Seiten zeichnet. Sie zeigt dabei, dass die kleinen Quadrate zusammen, das grosse Quadrat ergeben. Die Lehrperson beschriftet die Seiten des rechtwinkligen Dreiecks und die Seiten der Flächenquadrate mit a, b und c und die Flächenquadrate mit A1, A2 und A3. Darauf werden die Seiten des rechtwinkligen Dreiecks von einem Schüler mit Hypotenuse und Katheten angeschrieben. Die Lehrperson fordert darauf die Schülerinnen und Schüler auf, nun den Satz des Pythagoras mit den an die Wandtafel geschriebenen Bezeichnungen zu formulieren. Ein Schüler schreibt unter die grafische Darstellung A1+ A2= A3. Mit der Aufforderung der Lehrperson den Satz des Pythagoras mit den Bezeichnungen der Seiten anzuschreiben, notiert ein Schüler die nicht ganz korrekte Formel an die Wandtafel, die von der Klasse zu a2+ b2= c2 korrigiert wird. Danach erzählt die Lehrperson Geschichtliches zu Beweisführungen des Satzes und über die Wichtigkeit und Wirkung von Pythagoras bis hin zur Briefmarke und zur Werbung von Rittersport in unserer Zeit. Dazu befestigt die Lehrperson ein Plakat, auf dem der Satz des Pythagoras mit Rittersportschokolade dargestellt ist. In der Folge leitet die Lehrperson zum Zerlegungsbeweis über. Dazu leitet sie die Schülerinnen und Schüler an, aus zehn Figuren (Puzzleteile) und einem zusätzlichen rechtwinkligen Dreieck, die grafische Darstellung des Satzes von Pythagoras nachzubilden. Diese Arbeitsphase ist die Grundlage, für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler arbeiten dabei alleine. Der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Die Schülerarbeitsphase wird nach einer Weile von der Lehrperson unterbrochen und ein Schüler zeigt die Puzzlekombination am Helllramprojektor vor. An dieser Darstellung können sich die anderen Schülerinnen und Schüler orientieren. Ein zweiter Schüler zeichnet zur visuellen Unterstützung die Linien der Puzzleteile auf den Katheten- und dem Hypotenusenquadrat, einer vorgefertigten Skizze an der Wandtafel ein. Darauf werden die alten Puzzleteile eingesammelt und neue verteilt. Die Lehrperson erteilt einen neuen Auftrag an die Klasse. Dabei sollen die Schülerinnen und Schüler das Hypotenusen- und die Kathetenquadrate mit anderen Puzzleteilen zusammensetzten, um die grafische Darstellung des Satzes von Pythagoras zu bilden. Auch diese Arbeitsphase ist die Grundlage für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler bearbeiten den Auftrag alleine und der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Zur Kontrolle werden danach im öffentlichen Unterricht die Katheten- und Hypotenusenquadrate auf dem Hellraumprojektor (mit den Puzzleteilen) hingelegt. Dabei lösen sich verschiedene Schülerinnen und Schüler ab. Zum Schluss der Stunde überträgt ein Schüler zur visuellen Unterstützung die Linien der Puzzleteile auf eine zweite grafische Darstellung an der Wandtafel. (Projekt)     less

  • Satzgruppe des Pythagoras (A17-P-1218-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werte...    more

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werten selber konstruierter rechtwinkliger Dreiecke aus. In der Tabelle werden alle drei Seiten des konstruierten Dreiecks, die Hyotenusenabschnitte und die Höhe eingetragen sowie das Produkt der Hypotenusenabschnitte und das Quadrat der Höhe. Immer einige Schülerinnen und Schüler konstruieren Dreiecke mit denselben Angaben, die Hypothenuse ist für alle Schülerinnen und Schüler gleich, der erste Hypotenusenabschnitt wächst in Zentimeterschritten von einem auf acht Zentimeter. Nachdem die Resultate aller Schülerinnen und Schülern in der Tabelle am Hellraumprojektor gesammelt wurden, kommt die Klasse auf die Flächengleichheit des Rechtecks, gebildet aus den Hypotenusenabschnitten, und dem Höhenquadrat zu sprechen. Hypothetisch wird der Höhensatz formuliert. Anschließend ergänzen die Schülerinnen und Schüler die Tabelle in ihren Theorieheften selbständig. Durch Aufstellen von Verhältnisgleichungen zwischen den durch die Höhe des rechtwinkligen Dreiecks entstandenen Teildreiecke beweist die Klasse die Richtigkeit des Höhensatzes an der Wandtafel. Der Beweis wird von den Schülerinnen und Schülern in ihr Heft übernommen. Anschließend wird der Höhensatz in der Klasse in Worten ausformuliert und zum Beweis dazugeschrieben. Nun wird der Satz für rechtwinklige Dreiecke mit unüblichen Bezeichnungen verwendet. Danach berechnen die Schülerinnen und Schüler selbständig die Höhen von zwei rechtwinkligen Dreiecken, von denen die Hypotenusenabschnitte bekannt sind. Nachdem diese Berechnungen in der Klasse kontrolliert wurden, haben die Schülerinnen und Schüler Zeit, selbständig an den Hefteinträgen, die sie während dieser Doppellektion nicht fertig machen konnten, zu arbeiten. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    more

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    less


     1     
Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education