DE | EN
Logo fdz-Bildung
Search Research data Data of FDZ Bildung: searching

Data collections of FDZ Bildung

You can use individual terms to search the data collections at FDZ Bildung or use the filters to delimit the list of studies available from FDZ Bildung.

 
  • The following contents are searched in the data pool: title, topic, subject taught, abstract and keywords, unit of analysis, type and place of recorded units, title of study and survey.
  • Several search terms are automatically linked by "OR". You can link the words by "AND" if you tick the box "all words".
  • Blank spaces are used to separate search terms.
  • No distinction is made between small and capital letters.
  • Truncating: Search terms are not automatically truncated. You can use a * or % character for this purpose (math* will find mathematics).
  • Search by phrase: An exact combination of search terms can be used. Search terms must be inserted in quotation marks (e.g. "teamwork in lessons ").

reset

Request: "SCHUELERARBEIT (EINZELARBEIT)" (Filter: Social arrangement)
"SCHUELERARBEIT (GRUPPENARBEIT)" (Filter: Social arrangement)

Number of results: 96
Refine your search:
  • Satzgruppe des Pythagoras (A16-P-1208-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll ein...    more

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll eine Umfahrungsstraße gebaut werden. Da zwei quadratische Felder des Bauern Piepenbrink genau in der Bebauungszone liegen, will ihm die Gemeinde dafür ein einziges größeres quadratisches Feld überlassen. Die Lehrperson legt eine Folie auf den Hellraumprojektor, auf der zu sehen ist, wie die Felder liegen: Sie bilden die Pythagorasfigur. Eine Schülerin misst und berechnet die Quadratflächen und stellt fest, dass die kleinen Quadrate miteinander den selben Flächeninhalt haben, wie das große. Dann liest die Lehrperson weiter aus der Geschichte vor: Bauer Piepenbrink ist zufrieden mit dem Tausch und erzählt davon am Stammtisch. Seine beiden Kollegen, Bauer Plattfuss und Bauer Grossmaul, besitzen ähnliche quadratische Felder und wollen die auch gegen ein einziges großes Feld eintauschen. Nun sehen die Schülerinnen und Schüler an der Leinwand zuerst die Felder von Bauer Plattfuss: Die drei Quadrate sind um ein stumpfwinkliges Dreieck angeordnet. Wieder werden die Flächen der Quadrate berechnet und festgestellt, dass die Fläche des großen Quadrats größer ist als die der beiden kleinen Quadrate zusammen. Auch die Felder von Bauer Grossmaul werden vermessen und ihre Flächen berechnet. Da bei ihm die Felder um ein spitzwinkliges Dreieck angeordnet sind, ist die Fläche der beiden kleineren Quadrate zusammen natürlich größer als die des großen Quadrats. Die Lehrperson teilt die drei Pläne an die Schülerinnen und Schüler aus, die nun in Gruppen darüber beraten sollen, woran es liegt, dass sich beim einen Bauer der Tausch lohnt und beim andern nicht, denn bis jetzt haben sich die Schülerinnen und Schüler ausschließlich mit den Quadraten und nicht mit den eingeschlossenen Dreiecken beschäftigt. Nach angeregten Diskussionen sammelt die Lehrperson die Erkenntnisse der Schülerinnen und Schüler im Plenum. Den meisten Schülerinnen und Schüler ist aufgefallen, dass das Dreieck zwischen den Feldern des Bauern Piepenbrink rechtwinklig ist und dass darum die Flächen der beiden kleinen Feldern zusammen gleich groß sein könnten, wie die Fläche des angrenzenden großen quadratischen Feldes. Um diese Erkenntnis zu überprüfen, messen und vergleichen die Schülerinnen und Schüler selbständig verschiedene rechtwinklige Dreiecke, die auf einem von der Lehrperson ausgeteilten Blatt abgebildet sind. Vor der Pause bespricht die Lehrperson mit der Klasse, ob durch das Messen und Berechnen die Erkenntnisse, nämlich dass die Quadrate über den Katheten zusammen gleich groß sind, wie das Hypotenusenquadrat, bzw. dass wenn eine Quadratfläche die selbe Fläche hat, wie die Flächen zwei anderer Quadrate zusammen, die eingeschlossene Figur ein rechtwinkliges Dreieck sein muss, die aus der Piepnbrink-Geschichte hervorgegangen sind, bekräftigt wurden und fasst die Erkenntnis, dass also in einem rechtwinkligen Dreieck die Summe der Flächen der Kathetenquadraten gleich der Flächen des Hypotenusenquadrats ist, noch einmal zusammen. (Projekt)    less

  • Satzgruppe des Pythagoras (A17-P-1218-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werte...    more

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werten selber konstruierter rechtwinkliger Dreiecke aus. In der Tabelle werden alle drei Seiten des konstruierten Dreiecks, die Hyotenusenabschnitte und die Höhe eingetragen sowie das Produkt der Hypotenusenabschnitte und das Quadrat der Höhe. Immer einige Schülerinnen und Schüler konstruieren Dreiecke mit denselben Angaben, die Hypothenuse ist für alle Schülerinnen und Schüler gleich, der erste Hypotenusenabschnitt wächst in Zentimeterschritten von einem auf acht Zentimeter. Nachdem die Resultate aller Schülerinnen und Schülern in der Tabelle am Hellraumprojektor gesammelt wurden, kommt die Klasse auf die Flächengleichheit des Rechtecks, gebildet aus den Hypotenusenabschnitten, und dem Höhenquadrat zu sprechen. Hypothetisch wird der Höhensatz formuliert. Anschließend ergänzen die Schülerinnen und Schüler die Tabelle in ihren Theorieheften selbständig. Durch Aufstellen von Verhältnisgleichungen zwischen den durch die Höhe des rechtwinkligen Dreiecks entstandenen Teildreiecke beweist die Klasse die Richtigkeit des Höhensatzes an der Wandtafel. Der Beweis wird von den Schülerinnen und Schülern in ihr Heft übernommen. Anschließend wird der Höhensatz in der Klasse in Worten ausformuliert und zum Beweis dazugeschrieben. Nun wird der Satz für rechtwinklige Dreiecke mit unüblichen Bezeichnungen verwendet. Danach berechnen die Schülerinnen und Schüler selbständig die Höhen von zwei rechtwinkligen Dreiecken, von denen die Hypotenusenabschnitte bekannt sind. Nachdem diese Berechnungen in der Klasse kontrolliert wurden, haben die Schülerinnen und Schüler Zeit, selbständig an den Hefteinträgen, die sie während dieser Doppellektion nicht fertig machen konnten, zu arbeiten. (Projekt)    less

  • Satzgruppe des Pythagoras (A20-P-1225-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbr...    more

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbrink einen Landtausch an. Zwei kleine quadratische Felder sollen in ein angrenzendes großes quadratisches Feld umgetauscht werden. Der Bauer weiß nicht recht, ob er dem Handel zustimmen soll, doch seine Nichte berechnet die Flächen der Felder und rät ihrem Onkel auf den Tausch einzusteigen. Von dem Handel erzählt Bauer Piepenbrink am Stammtisch. Seine zwei Kollegen, Bauer Plattfuß und Bauer Großmaul, wollen daraufhin auch zwei kleine quadratische Felder in ein großes quadratisches Feld umtauschen. Die Lehrperson teilt die Pläne, wie die Felder der Bauern liegen an die Schüler aus. Jede Gruppe bearbeitet eine Felderkombination. Sie sollen herausfinden, ob sich der Tausch für "ihren" Bauern lohnt. Bei Bauer Piebenbrink bilden die Felderquadrate, die an den Ecken zusammenstossen in der Mitte einen Leerraum in Form eines rechtwinkligen Dreiecks, bei Bauer Plattfuß ein stumpfwinkliges, bei Bauer Großmaul ein spitzwinkliges Dreieck. Die Schülergruppen präsentieren ihre Erkenntnisse. Sie haben festgestellt, dass bei Bauer Piepenbrink die Flächen der kleinen Quadrate zusammen die Fläche des großen Quadrates ergibt, bei Bauer Plattfuss das große Quadrat größer und bei Bauer Großmaul kleiner, als die Flächen der beiden kleinen Quadrate zusammen. Ein Schüler, der Bauer Piepenbrinks Felder bearbeitet hat, vermutet, dass die Flächengleichheit mit dem rechtwinkligen Dreieck zwischen den Feldern zu tun hat. So kommt die ganze Klasse auf die Dreiecke zwischen den Feldern zu sprechen, und stellt fest, dass bei den Quadraten, die um das rechtwinklige Dreieck angeordnet sind, die Flächen der beiden kleineren zusammen die Fläche des größeren ergeben. Da nun scheinbar oft von rechtwinkligen Dreiecken gesprochen wird, führt die Lehrperson die Bezeichnungen im rechtwinkligen Dreieck ein. Mit den neu erlernten Begriffen versuchen die Schülerinnen und Schüler im Plenum ihre Erkenntnisse bezüglich der Quadrate über den Dreiecksseiten in einem Satz zu formulieren. Schließlich wird eine befriedigende Formulierung gefunden. Diese schreiben die Schülerinnen und Schüler in ihre Theorieblätter. Anschließend überprüfen sie den behaupteten Satz selbständig an einigen Übungsaufgaben aus dem Buch. (Projekt)    less

  • Satzgruppe des Pythagoras (B01-P-2101-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler...    more

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler spontan. Ausgehend von der Frage wie „draußen auf dem Feld“ im rechten Winkel gebaut werden könne, zeigt die Lehrperson, dass mit einer Schnur ein rechtwinkliges Dreieck entsteht, wenn die Längen der drei Schnurabschnitte im Verhältnis drei, vier und fünf zueinander stehen. Danach fordert die Lehrperson die Schüler und Schülerinnen auf, in Gruppen zu diskutieren und herauszufinden wie die Zahlen der pythagoräischen Zahlentripeln mathematisch zusammenhängen. Dazu wird ein Blatt mit verschiedenen Zahlentripeln abgegeben. An einem Gruppentisch ist der Satz des Pythagoras bereits bekannt. Diese Schülerinnen und Schüler werden nun auf die anderen Gruppen verteilt, um so ihr Wissen an den Rest der Klasse weiterzugeben. Um die Aussagen der Schülerinnen und Schüler zu bestätigen, stellt die Lehrperson den Satz des Pythagoras an der Wandtafel mit einem roten Hypotenusen- und grünen Kathetenquadraten graphisch dar. Danach berechnen die Schülerinnen und Schüler mit dem neu gelernten Satz selbständig die fehlenden Seiten von verschiedenen rechtwinkligen Dreiecken, ohne dass die Lehrperson vorgezeigt hat, wie solche Aufgaben zu lösen sind. Nachdem die Schülerinnen und Schüler Gelegenheit hatten, ihre Resultate zu korrigieren, erhalten sie ein Blatt, auf dem sie die Pythagorasfigur entsprechend der Wandtafeldarstellung anmalen und in ihr Theorieheft einkleben. Danach werden in Stillarbeit weitere Dreiecksseiten berechnet und kontrolliert. Um die Lektion abzurunden, wiederholt die Lehrperson vor der Pause das in dieser Lektion Gelernte. (Projekt)    less

  • Satzgruppe des Pythagoras (B01-P-2101-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Um das vor der Pause Gelernte und Angewandte noch einmal zu veranschaulichen, zeigt die Lehrperson einen Film. In einer ersten Szene zeigt ein Zimmermann seinem Nachbarn, wie er se...    more

    Um das vor der Pause Gelernte und Angewandte noch einmal zu veranschaulichen, zeigt die Lehrperson einen Film. In einer ersten Szene zeigt ein Zimmermann seinem Nachbarn, wie er seine neue Pergola rechtwinklig zum Haus stehen bekommt, in einer zweiten Szene erklärt ein altertümlicher Baumeister seinem Schüler den „Trick mit der Knotenschnur“. Anschliessend wird im Film der Ergänzungsbeweis kurz gezeigt. An Hand dieser Filmsequenz und einem Blatt, auf dem die unbeschrifteten Konstruktionen dieses Beweises abgebildet sind, sollen die Schülerinnen und Schüler den Beweis für sich noch einmal nachvollziehen. Da dies den meisten Schwierigkeiten macht, zeigt die Lehrperson den Beweis am Hellraumprojektor auf zwei verschiedene Arten vor. Schliesslich übernehmen die Schülerinnen und Schüler die Ausführungen der Lehrperson auf ihr Blatt. Danach erklärt die Lehrperson die Hausaufgaben, an denen die Schülerinnen und Schüler bis zum Ende der Lektion arbeiten können: In einem Raster soll die Länge eines Zick-Zack-Weges, der beim genauen Betrachten aus lauter Hypotenusen besteht, berechnet werden. (Projekt)    less

  • Satzgruppe des Pythagoras (B05-P-2105-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach der Pause gibt die Lehrperson das Thema der Stunde bekannt. Die Lernenden sollen erste Anwendungen des Satzes von Pythagoras kennen lernen. Zusammen mit den Schülerinnen und S...    more

    Nach der Pause gibt die Lehrperson das Thema der Stunde bekannt. Die Lernenden sollen erste Anwendungen des Satzes von Pythagoras kennen lernen. Zusammen mit den Schülerinnen und Schülern zeigt die Lehrperson nochmals die Eigenschaften eines rechtwinkligen Dreiecks auf und erstellt am Hellraumprojektor eine grafische Darstellung mit den Quadratflächen über den Seiten: Die Relevanz des Satzes von Pythagoras im rechtwinkligen Dreieck wird aufgezeigt. In der folgenden Schülerarbeitsphase sollen die Schülerinnen und Schüler anhand eines rechtwinkligen Dreiecks, in dem man die Länge der beiden Katheten kennt, die Hypotenuse berechnen. Sie sollen das Resultat an den Gruppentischen besprechen. Haben sie ein richtiges Tischresultat, sollen sie eine weitere ähnliche Aufgabe lösen. Diesmal ist eine der Katheten gesucht. Das Resultat der zweiten Aufgabe wird im Anschluss an die Gruppenarbeit in der Klasse besprochen. Danach erhalten die Schülerinnen und Schüler einen neuen Auftrag. Selbständig sollen sie an elf ähnlich einschrittigen und mehrschrittig anspruchsvolleren Aufgaben zur Seitenberechnung im rechtwinkligen Dreieck und im Rechteck arbeiten. Während der Einzelarbeitsphase gibt die Lehrperson drei weitere mehrschrittige Aufgaben bekannt, an denen die Lernenden arbeiten können. Es werden keine Aufgaben vorbesprochen. Zum Schluss der Doppellektion gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    less

  • Satzgruppe des Pythagoras (B08-P-2108-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    In einer längerdauernden öffentlichen problemorientierten Phase (Zahlentripel) wird der Satz des Pythagoras problemorientiert erarbeitet. Zuerst gibt die Lehrperson dazu den Schüleri...    more

    In einer längerdauernden öffentlichen problemorientierten Phase (Zahlentripel) wird der Satz des Pythagoras problemorientiert erarbeitet. Zuerst gibt die Lehrperson dazu den Schülerinnen und Schülern den Auftrag, ein rechtwinkliges Dreieck zu zeichnen, dieses zu beschriften und die Seiten zu messen. Danach werden von den Schülerinnen und Schülern die Maße dreier, von ihnen gezeichneter Dreiecke diktiert, und die Lehrperson schreibt die Maße an die Wandtafel. Darauf trägt die Klasse in einem entwickelnden Lehr- und Lerngespräch beobachtbare Zusammenhänge zwischen den Dreieckseiten ihrer gezeichneten rechtwinkligen Dreiecke zusammen. Ergänzend dazu schreibt die Lehrperson das Zahlentripel 3, 4, 5 an die Wandtafel und gibt den Schülerinnen und Schülern den Auftrag die Quadratzahlen der Seitenlängen von ihrem und von diesem Dreieck zu berechnen. Dies geschieht alles in einer öffentlichen Phase und in der Folge des entwickelnden Lehr- und Lerngesprächs wird die Formel des Pythagoras genannt. Diese wird von der Klasse mit den Beispielen an der Wandtafel überprüft. Dabei stellt die Klasse fest, dass aufgrund von Messungen Ungenauigkeiten auftreten. Die Lehrperson äußert dazu, dass die Formel von Pythagoras aber trotzdem als allgemeingültig angenommen werden kann. Die Formel a2+b2 =c2 wird von der Lehrperson an die Wandtafel geschrieben. In der Folge entwickelt die Lehrperson mit der Klasse problemorientiert einen Beweis des Satzes von Pythagoras. Dabei wird zuerst anhand eines entwickelnden Lehr- und Lerngesprächs besprochen, wie die Quadratzahlen grafisch dargestellt werden. Darauf wird die Formel a2+b2 =c2 von den Schülerinnen und Schülern mit ihren Legeformen aus Plastik dargestellt, die Lehrperson zeigt es gleichzeitig am Hellraumprojektor vor. Nun gibt die Lehrperson die Anweisung, aus den vorhandenen Dreiecken und Vierecken zwei deckungsgleiche Vierecke zu bauen. Die zwei deckungsgleichen Vierecke entsprechen der grafischen Darstellung des Ergänzungsbeweises. Da einigen Schülerinnen und Schülern das Material fehlt, arbeiten sie in Gruppen. In der nächsten Phase entwickelt die Lehrperson auf der Basis der gelegten Quadrate den Beweis. Darauf benennt die Lehrperson die Formel als Satz des Pythagoras. Bei der Erläuterung des Arbeitsplans, macht die Lehrperson die Lernenden darauf aufmerksam, dass sie in den nächsten Wochen mit dieser Formel rechnen werden. Die Lehrperson erklärt weitere organisatorische Belange genau: Das selbständige Aufstellen des Zeitrahmens, die Anzahl der Aufgaben, welche von den Lernenden bearbeitet werden und die Arbeitsform (Arbeit in Gruppen). Zum Schluss der Stunde gibt die Lehrperson den Auftrag, einen Theoriehefteintrag zu schreiben. Dafür schreiben die Schülerinnen und Schüler die Anschriften der Wandtafel und einen Teil des Beweises ab und einen anderen Teil des Beweises, den sie auf einem Blatt erhalten haben, kleben sie ins Heft. Wer mit dieser Arbeit nicht fertig wird, macht sie nach der Pause fertig. (Projekt)    less

  • Satzgruppe des Pythagoras (B08-P-2108-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn der Lektion beenden die Schülerinnen und Schüler den Hefteintrag der ersten Lektion. Danach wird gemeinsam in der Klasse eine Aufgabe besprochen. Bei dieser Aufgabe geht ...    more

    Zu Beginn der Lektion beenden die Schülerinnen und Schüler den Hefteintrag der ersten Lektion. Danach wird gemeinsam in der Klasse eine Aufgabe besprochen. Bei dieser Aufgabe geht es um die Berechnung der Hypotenuse in einem rechtwinkligen Dreieck. Darauf erarbeitet die Lehrperson mit der Klasse die Berechnung der Kathete. In der Folge erteilt die Lehrperson der Klasse den Auftrag, am Arbeitsplan zu arbeiten, welcher zwölf Aufgaben umfasst. Die Schülerinnen und Schüler arbeiten in Gruppen. Die Aufgaben die von den Schülerinnen und Schülern bearbeitet werden, sind der gemeinsam bearbeiteten und der gemeinsam besprochenen Aufgabe zum größten Teil ähnlich. Es geht dabei um die Berechnung der Hypotenuse und der Katheten in rechtwinkligen Dreiecken. Ebenso werden zwei mehrschrittige Aufgaben bearbeitet (Berechnung von Diagonalen im Rechteck und der Basishhöhe von gleichschenkligen Dreiecken). (Projekt)    less

  • Satzgruppe des Pythagoras (B11-P-2111-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papie...    more

    Die Lektion beginnt mit einigen organisatorischen Angaben. Die Schüler setzen sich in Gruppen zusammen und erhalten pro Gruppe drei ausgeschnittene rechtwinklige Dreiecke aus Papier. In der Klasse werden - ohne diese schriftlich fest zu halten - kurz die Bezeichnungen im rechtwinkligen Dreieck angesprochen. Danach versuchen die Schülerinnen und Schüler in Gruppen an Hand der vorliegenden Dreiecke Verhältnisregeln, die im rechtwinkligen Dreieck gelten sollen, herauszufinden. Da der Satz des Pythagoras bei einigen Schülerinnen und Schüler bereits bekannt ist, bringen zwei der drei Schülergruppen in einer Sammlungsphase dann auch zur Sprache, dass die Summe der Flächen der Kathetenquadrate der Fläche des Hypotenusenquadrats entspricht. Auf Grund dieser Annahme füllen die Schülerinnen und Schüler eine Tabelle an der Wandtafel mit den Maßen ihrer Dreiecke aus. Mit diesen Berechnungen wird überprüft, dass die Summe der Kathetequadrate der vermessenen Dreiecke ziemlich genau ihren Hypotenusenquadraten entspechen. Anschließend stellt die Lehrperson diese Aussage mit der Pythagorasfigur an der Wandtafel bildlich dar und zeigt dann ein Computerprogramm, das beim Verschieben des rechten Winkels eines rechtwinkligen Dreiecks auf dem Thaleskreis sofort alle Seitenquadrate berechnet. Den mathematischen Beweis des Satzes kündigt die Lehrperson für die nächste Lektion an. Dann legt sie eine Folie auf den Hellraumprojektor, auf der alle wichtigen Aussagen dieses Theorieteils festgehalten sind. Die Schülerinnen und Schüler übernehmen das auf der Folie Beschriebene in ihr Theorieheft. Diejenigen Schülerinnen und Schüler, die mit Abschreiben fertig sind, beginnen selbständig mit einschrittigen Berechnugen von Seiten eines gegebenen rechtwinkligen Dreiecks. Vor dem Ende der Lektion werden die Hausaufgaben - diese ersten vier Dreiecksseiten zu berechnen und eine Vorbereitungsaufgabe für den Beweis der nächsten Lektion - erteilt. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Als erstes beschriften die Schülerinnen und Schüler ein rechtwinkliges Dreieck, damit "alle vom gleichen sprechen". Danach schneiden sie vier identische rechtwinklige Dreiecke ABC...    more

    Als erstes beschriften die Schülerinnen und Schüler ein rechtwinkliges Dreieck, damit "alle vom gleichen sprechen". Danach schneiden sie vier identische rechtwinklige Dreiecke ABC aus, die sie auf unterschiedliche Arten im Quadrat mit der Seitenlänge a + b anordnen. Es entstehen verschiedenste Möglichkeiten. Die Lehrperson lässt dann die zwei Möglichkeiten, die für den Ergänzungsbeweis benötigt werden, an der Wandtafel skizzieren. Dank diesen Skizzen kann ein Schüler der Klasse den Beweis mündlich erklären. Anschließend sollen die Schülerinnen und Schüler den Beweis mit algebraischen Mitteln analog zu den Skizzen selbständig führen. Da dies den meisten Mühe bereitet, beendigt die Lehrperson den Beweis an der Wandtafel. Vor dem Ende der Lektion überprüfen die Schülerinnen und Schüler den Satz des Pythagoras an einem selber konstruierten rechtwinkligen Dreieck. (Projekt)    less


Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education