DE | EN
Search Research data Data of FDZ Bildung: searching

Data collections of FDZ Bildung

You can use individual terms to search the data collections at FDZ Bildung or use the filters to delimit the list of studies available from FDZ Bildung.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

reset

Request: UEBUNGSAUFGABE (Filter: Schlagwörter)
Number of results: 92
Refine your search:
  • Satzgruppe des Pythagoras (A12-P-1119-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn der zweiten Stunde löst die Klasse verschiedene Aufgaben gemeinsam öffentlich. Bei den ersten fünf Aufgaben werden Seiten im rechtwinkligen Dreieck richtig zugeteilt (Kat...    more

    Zu Beginn der zweiten Stunde löst die Klasse verschiedene Aufgaben gemeinsam öffentlich. Bei den ersten fünf Aufgaben werden Seiten im rechtwinkligen Dreieck richtig zugeteilt (Katheten, Hypotenusen) und die Formel oder die Umkehrung dementsprechend aufgestellt. Diese Aufgaben sind bereits besprochenem in der ersten Pythagorasstunde ähnlich. Danach wird in der Klasse gemeinsam eine Aufgabe gelöst, bei der Zahlen eingesetzt werden, um so die Hypotenuse zu berechnen. Danach formulieren die Schülerinnen und Schüler im öffentlichen Unterricht den Satz des Pythagoras in Worten. Die mit Hilfe der Lehrperson gefundene Formulierung wird von der Lehrperson diktiert und die Schülerinnen und Schüler schreiben die Ausformulierung des Satzes in ihr Theorieheft. Danach berechnet die Klasse gemeinsam eine Aufgabe. Bei dieser Aufgabe geht es um die Berechnung der Hypotenuse. Dieser Aufgabentyp ist bereits gelösten Aufgaben ähnlich. In der Folge sollen die Schülerinnen und Schüler drei Aufgaben lösen. Bei den Aufgaben geht es um die Berechnung der Katheten. Die Schülerinnen und Schüler kennen die Kathetenberechnung sowie das Wurzelziehen. Die Aufgaben, die von den Schülerinnen und Schülern in Einzelarbeit gelöst werden, sind bereits behandelten ähnlich. Die Lehrperson unterstützt die einzelnen Schülerinnen und Schüler während dieser Arbeitsphase. Danach ruft die Lehrperson drei Schülerinnen und Schüler auf, welche je einen Lösungsweg der bearbeiteten Aufgaben an die Wandtafel schreiben. Die anderen Schülerinnen und Schüler rechnen weiter und vergleichen ihre Ergebnisse mit den an der Wandtafel notierten. In der nächsten öffentlichen Phase klärt die Lehrperson Fragen der Schülerinnen und Schüler anhand der Lösungswege an der Wandtafel und bespricht die Aufgaben. Dabei kommt die Lehrperson auf die übersichtliche Darstellung der Lösungswege zu sprechen. Als nächstes gibt die Lehrperson die Hausaufgaben auf. Danach liest die Klasse die Anleitung für eine weitere Aufgabe gemeinsam und die Lehrperson gibt kurze Anweisungen dazu. Diese Aufgabe ist mehrschrittig und es geht dabei um die Konstruktion eines Quadrates, das aus der Summe zweier kleineren Quadrate (mit vorgegebenen Seitenlängen) gebildet werden soll. Die Aufgabe wird von den Schülerinnen und Schülern in Partnerarbeit gelöst. Zum Schluss der Stunde klärt die Lehrperson organisatorische Belange bezüglich Schulräumen und Hausaufgaben. (Projekt)     less

  • Satzgruppe des Pythagoras (A12-P-1119-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn dieser Lektion wird das in den letzten zwei Stunden angeeignete Wissen wiederholt. Dazwischen wird erläutert, warum die längste Seite immer gegenüber dem rechten Winkel liege...    more

    Zu Beginn dieser Lektion wird das in den letzten zwei Stunden angeeignete Wissen wiederholt. Dazwischen wird erläutert, warum die längste Seite immer gegenüber dem rechten Winkel liegen muss. Danach korrigiert die Klasse die Hausaufgaben. Die Lösungswege und Ergebnisse werden dabei besprochen. Dazwischen zeigt die Lehrperson der Klasse Beispiele von pythagoräischen Zahlentrippeln. Danach werden die Lösungen der Hausaufgaben zusätzlich im Bezug auf Zahlentrippel überprüft. Nach dieser öffentlichen Phase gibt die Lehrperson der Klasse den Auftrag, sich mit der Anwendung des Satzes von Pythagoras im gleichschenkligen Dreieck zu beschäftigen. Dazu wird ein gleichschenkliges Dreieck mit seiner Basishöhe von der Lehrperson an die Wandtafel gezeichnet. Gemeinsam wird das weitere Vorgehen öffentlich besprochen. Nun arbeiten die Schülerinnen und Schüler alleine, indem sie im gleichschenkligen Dreieck alle drei Höhen der Seiten und die Fläche des Dreicks berechnen. Die Aufgabe ist anspruchsvoll aufgrund ihrer Mehrschrittigkeit, obwohl das Vorgehen zuvor gemeinsam besprochen wurde. Die Schülerarbeitsphase dauert bis zur Pause. (Projekt)     less

  • Satzgruppe des Pythagoras (A13-P-1120-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn dieser Stunde versorgen die Schülerinnen und Schüler die grünen Puzzleteile in ihre Umschläge und ein Schüler sammelt sie ein. An der Wandtafel sind die zwei grafischen Dar...    more

    Zu Beginn dieser Stunde versorgen die Schülerinnen und Schüler die grünen Puzzleteile in ihre Umschläge und ein Schüler sammelt sie ein. An der Wandtafel sind die zwei grafischen Darstellungen des Satzes von Pythagoras mit den Einteilungen der Puzzleteile gezeichnet. Sie wurden letzte Stunde erarbeitet und gelten als Grundlage zur Beweisführung des Zerlegungsbeweises. Nun machen die Schülerinnen und Schüler in einer öffentlichen Phase mehrere Vorschläge, wie anhand dieser Darstellungen zu beweisen wäre, dass a2 + b2 = c2 ist. Dabei zeigt ein Schüler an der Wandtafel, dass sowohl die Einzelteile von a2, als auch b2 in Puzzleteilen von c2 enthalten sind. Danach werden Drehmöglichkeiten um einen Drehpunkt und das Spiegeln als Beweisidee genannt. Danach nennt die Klasse auf das Insistieren der Lehrperson hin, das Verschieben als Beweismöglichkeit. Nun werden die kongruenten Puzzleteile von a2, b2 und c2 mit jeweils derselben Farbe an der Wandtafel angemalt. In der Folge will die Lehrperson wissen, was nun entscheidend für diese Beweisführung des Satzes von Pythagoras ist. Ein Schüler nennt darauf, die Kongruenz von den Einzelteilen der Hpotenusenquadrate und Kathetenquadrate. In der Folge gibt die Lehrperson den Schülerinnen und Schülern den Auftrag, einen weiteren Beweis zu legen. Ein Schüler verteilt neue Umschläge. In jedem Umschlag stecken Puzzleteile für den Ergänzungsbeweis. Die Schülerinnen und Schüler haben den Auftrag, zwei große, deckungsgleiche Quadrate zu legen. Die Schülerinnen und Schüler arbeiten in Einzelarbeit. Die Arbeit baut auf dem Vorwissen der Schülerinnen und Schüler auf. Während dieser Schülerarbeitsphase zeichnet die Lehrperson zwei kongruente Quadrate an die Wandtafel, welche in der Folge als Vorlagen für den Ergänzungsbeweis dienen sollen. Nach einer Weile unterbricht die Lehrperson die Schülerarbeit für eine längere öffentliche Phase und zwei Schüler zeichnen zu Beginn je auf einem der Quadrate an der Wandtafel mit Linien die einzelnen Puzzleteile ein. In der Folge führt die Lehrperson das Gespräch zu den rechtwinkligen Dreiecke in diesen Darstellungen. Dabei stellt sie die Frage, wo diese rechtwinkligen Dreiecke zu finden sind. Die Schülerinnen und Schüler äußern sich dazu und bemalen die entsprechenden Seiten der rechtwinkligen Dreiecke (Hypotenuse, Kathete und Kathete) an der Wandtafel mit denselben Farben. Die Lehrperson beschriftet die Seiten jeweils mit Buchstaben und die Klasse nennt die Flächeninhalte der grossen Quadrate und bespricht die Flächeninhalte der Teilquadrate. In der Folge setzen die Schülerinnen und Schüler (weiter im öffentlichen Unterricht) die Flächen der grossen Quadrate gleich (2ab + c2 = a2 + b2 + 2ab). Die Gleichung wird aufgelöst und heraus kommt der Satz des Pythagoras. Die Lehrperson äußert, dass sie nun genug bewiesen hätten und die Puzzleteile werden in den Umschlägen wieder eingesammelt. Während der Zeit des Einsammelns zeichnet die Lehrperson ein rechtwinkliges Dreieck an die Wandtafel und beschriftet es mit Buchstaben. Eine Schülerin nennt die Formel dazu. Darauf erteilt die Lehrperson den Schülerinnen und Schülern den Auftrag dreizehn Teilaufgaben eines Arbeitsblattes zu lösen. Bei fünf Teilaufgaben geht es um das Finden der richtigen Formel, was den Schülerinnen und Schüler bereits bekannt ist. Bei einer weiteren Aufgabe mit mehreren Teilaufgaben, geht es darum in zwei großen Dreiecken verschiedenste rechtwinklige Dreiecke zu entdecken und verschiedene Seiten zu berechnen. Diese Aufgaben sind mehrschrittig und anspruchsvoll. Die Schülerinnen und Schüler arbeiten darauf in Einzelarbeit. Nach der Schülerarbeit werden die Ergebnisse der ersten fünf Teilaufgaben und die Anzahl gesuchter rechtwinkliger Dreiecke, in den nächsten Aufgaben, genannt und die Lehrperson gibt die Beendigung dieses Auftrags als Hausaufgaben auf. (Projekt)     less

  • Satzgruppe des Pythagoras (A13-P-1120-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn dieser Stunde macht die Klasse einen Rückblick auf die zwei letzten Pythagoraslektionen. Dabei nennen die Schülerinnen und Schüler alle wichtigen und wesentlichen Inhalte...    more

    Zu Beginn dieser Stunde macht die Klasse einen Rückblick auf die zwei letzten Pythagoraslektionen. Dabei nennen die Schülerinnen und Schüler alle wichtigen und wesentlichen Inhalte. Darauf werden die Ergebnisse und der Lösungsweg der Hausaufgaben besprochen. Danach zeichnet die Lehrperson ein rechtwinkliges Dreieck an die Wandtafel, bei dem eine Kathete gesucht wird. Die Aufgabe wird öffentlich bearbeitet. Sie ist schwierig, da die Schülerinnen und Schüler bisher keine Katheten berechnet haben. Ein Schüler löst die ganze Aufgabe an der Wandtafel. Das Wurzelziehen bereitet ihm Mühe, deshalb schreibt er x= √28 cm2. Darauf fragt die Lehrperson nach einer allgemeinen Formel um x zu berechnen. Die Klasse beteiligt sich rege an der Diskussion über verschiedene Lösungsvarianten und finden zum Schluss die richtige Formel. Darauf erteilt die Lehrperson einen neuen Auftrag, Aufgabe zwei auf dem Aufgabenblatt, das die Schülerinnen und Schüler schon in der letzten Lektion erhalten haben. Die Aufgabe zwei hat fünf Teilaufgaben. Es geht dabei um die Berechnung von Hypotenusen und Katheten. Die Lösungsschritte sind den Schülerinnen und Schülern bekannt, die Aufgabe ist deshalb einfach zu lösen. Die Schülerinnen und Schüler arbeiten alleine. Nach der Schülerarbeit werden die Ergebnisse korrigiert. Danach liest eine Schülerin der Klasse eine Aufgabe vor. (Alle Schülerinnen und Schüler haben diese schriftlich vor sich liegen). Es geht dabei um einen Schwimmwettbewerb und die unterschiedlichen Längen von Schwimmstrecken, abhängig von der Startnummer der Teilnehmer. Auf dem Aufgabenblatt findet sich ein Skizze, welche die Lehrperson ebenso an die Wandtafel gezeichnet hat. Die Lehrperson sagt darauf, dass das doch ungerecht sei, dass Teilnehmer mit einer höheren Startnummer eine längere Strecke zu schwimmen haben. Darauf diskutiert die Klasse, ob die Teilnehmer mit der Startnummer 700 und 1400 tatsächlich Nachteile haben und wo die Ideallinie der Schwimmer durchgeht. Die Schülerinnen und Schüler kommen mit der Diskussion darauf dass die Schwimmstrecke (Hypotenuse) mit dem Pythagoras berechnet werden kann. Zum Schluss der Stunde gibt die Lehrperson diese Aufgabe als Hausaufgabe auf. (Projekt)     less

  • Satzgruppe des Pythagoras (A14-P-1126-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn der Doppellektion gibt die Lehrperson bekannt, dass sie mit dem Thema „Geometrische Sätze“ weiterfahren möchte. Im Anschluss an die Bekanntgabe des Themas hängt sie ein Plaka...    more

    Zu Beginn der Doppellektion gibt die Lehrperson bekannt, dass sie mit dem Thema „Geometrische Sätze“ weiterfahren möchte. Im Anschluss an die Bekanntgabe des Themas hängt sie ein Plakat an die Wandtafel mit der Darstellung eines rechtwinkligen Dreiecks und den Quadraten über den Dreiecksseiten. Die Quadratflächen sind mit lauter gleich großen und quadratischen Schokoladenstückchen beklebt. Die Lehrperson fordert die Schülerinnen und Schüler auf, anhand der Darstellung zu entdecken, was der Satz von Pythagoras wohl aussagt. Gemeinsam finden sie heraus, dass die Quadrate über den Katheten zusammen gleich groß sein müssen wie das Quadrat über der Hypotenuse und dass der Satz nur in rechtwinkligen Dreiecken Gültigkeit hat. Nachdem eine Schülerin den Satz nochmals allgemein formuliert hat, gibt die Lehrperson folgenden Auftrag: Die Schülerinnen und Schüler sollen selbständig den Satz für sich formulieren und aufschreiben und mit einer entsprechenden Skizze ergänzen. Danach fordert die Lehrperson einige der Lernenden auf, ihre Formulierungen laut vorzutragen. Eine richtige Formulierung des Satzes schreibt die Lehrperson an die Wandtafel. Dann beschriften sie noch die Flächen der Skizze und schreiben den Satz von Pythagoras in Kurzform dazu. Anhand der Darstellung auf dem Plakat an der Wandtafel, erarbeiten sie gemeinsam eine erste Aufgabe, indem sie die entsprechenden Zahlen (Schokoladenquadrate) in die Kurzform einsetzen. Danach lösen sie ebenfalls im Klassenverband eine Aufgabe zur Berechnung der Hypotenuse, gegeben sind die beiden Katheten. Eine weitere ähnliche Aufgabe wird gelöst, diesmal soll mit Hilfe der Formel eine der Katheten berechnet werden. Anschließend lösen sie im Buch zwei Aufgaben zum Erkennen von rechtwinkligen Dreiecken. Die Schülerinnen und Schüler formulieren für alle gut hörbar die Zusammenhänge zwischen den Seitenlängen. Im Anschluss daran, erarbeitet die Lehrperson zusammen mit den Lernenden eine neue Aufgabe. Die Aufgabe besteht aus sechs ähnlichen unabhängigen Berechnungsaufgaben. Es handelt sich um rechtwinklige Dreiecke, in denen jeweils zwei Dreiecksseiten und der Ort des rechten Winkels gegeben sind. Zusammen erstellen sie die Skizze zur ersten Teilaufgabe. Die Schülerinnen und Schüler sollen mit den erarbeiteten Angaben selber die fehlende Seite berechnen. Danach kontrollieren sie gemeinsam das Ergebnis, indem sie den Lösungsweg an die Wandtafel schreiben. Im Anschluss daran sollen die Schülerinnen und Schüler selbständig drei weitere Teilaufgaben in ihr Heft lösen. Während der Einzelarbeit gibt die Lehrperson für diejenigen, welche bereits fertig sind, die beiden letzten Teilaufgaben zum Lösen. Bevor sie Pause machen, kontrollieren sie noch die ersten drei Ergebnisse, indem sie die Hypotenuse und das Resultat nennen. (Projekt)    less

  • Satzgruppe des Pythagoras (A14-P-1126-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach der Pause erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schülern die Umkehrungen der pythagoräischen Formel a2+b2=c2. Danach erarbeiten sie einen Beweis, indem sie...    more

    Nach der Pause erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schülern die Umkehrungen der pythagoräischen Formel a2+b2=c2. Danach erarbeiten sie einen Beweis, indem sie den bereits bekannten Kathetensatz zu Hilfe nehmen. Anschließend sollen die Lernenden den Beweis für sich nochmals durchführen, indem sie ihn zeichnerisch darstellen und in ihrem Heft die einzelnen Schritte schriftlich in einer Gleichung festhalten. Sie dürfen mit ihrem Banknachbarn zusammenarbeiten. Danach schauen die Lehrperson und die Lernenden den Beweis nochmals an, indem eine Schülerin an der Wandtafel den Beweis rechnerisch festhält. Im Anschluss an die Darbietung der Schülerin, erklärt die Lehrperson zusammen mit den Lernenden, wieso der Satz von Pythagoras eigentlich Hypotenusensatz heißen sollte. Er notiert die nun bereits bekannten Sätze (Kathetensatz, Höhensatz, Satz von Pythagoras) an die Wandtafel und fordert die Schülerinnen und Schüler auf, diese in ihr Heft zu übernehmen. Danach besprechen sie den Anfang einer neuen mehrschrittigen Berechnungsaufgabe im rechtwinkligen Dreieck. Es geht um die Berechnung der Seilbahnlänge. Eine Schülerin erklärt, wie man die Aufgabe lösen kann. Die Lernenden sollen selbständig die von der Schülerin genannten Schritte nachvollziehen. Wer fertig ist, soll eine weitere mehrschrittige Berechnungsaufgabe lösen (Berechnen und Vergleichen eines Strassenabschnittes). Anschließend zeigt eine Schülerin einen Lösungsweg an der Wandtafel vor. Zum Schluss der Doppellektion, bevor die Schülerinnen und Schüler die Schokolade unter sich aufteilen dürfen, gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    less

  • Satzgruppe des Pythagoras (A14-P-1126-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn der Lektion fordert die Lehrperson die Lernenden auf, den Satz von Pythagoras zu repetieren. Danach kontrollieren sie die Hausaufgaben. Die Resultate werden genannt. Dana...    more

    Zu Beginn der Lektion fordert die Lehrperson die Lernenden auf, den Satz von Pythagoras zu repetieren. Danach kontrollieren sie die Hausaufgaben. Die Resultate werden genannt. Danach lösen sie gemeinsam eine einfache Anwendungsaufgabe zum rechtwinkligen Dreieck. Es geht um die Berechnung der Länge eines Seils. Die einzelnen Schritte (Skizze, Gleichung, Lösungsweg) werden an der Wandtafel festgehalten. Nachdem eine Schülerin einen Antwortsatz öffentlich formuliert hat, fasst die Lehrperson die drei Schritte nochmals zusammen. Danach lösen sie eine neue mehrschrittige Aufgabe, in der berechnet werden soll, in welcher Höhe ein Baum umgeknickt ist. Wiederum halten sie Schritt für Schritt an der Wandtafel fest. Mit dem Formulieren des Antwortsatzes lösen sie die Aufgabe fertig. Eine nächste sehr komplexe Aufgabe, in der berechnet werden soll, wieweit ein Brunnen von den beiden Türmen entfernt steht, lösen sie gemeinsam Schritt für Schritt bis zur Aufstellung der Gleichungen. Das Zusammenfassen und das Auflösen der Gleichungen und eine weitere angefangene Aufgabe sollen die Schülerinnen und Schüler als Hausaufgabe fertig lösen. Damit endet die Lektion. (Projekt)    less

  • Satzgruppe des Pythagoras (A15-P-1205-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. De...    more

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. Der Bauer Albrecht soll dabei zwei seiner Felder gegen ein drittes tauschen, da die Bundesstrasse auf seinem Land vorbei führen soll. Die Klasse bespricht die Aufgabenstellung und die Lehrperson zeigt dazu die grafische Darstellung des Satzes von Pythagoras am Hellraumprojektor. In der Klasse wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs besprochen, ob dieser Feldertausch für den Bauer Albrecht lohnend sein kann. Ein Schüler schlägt vor, die Seiten der Quadrate zu messen und sie jeweils mal zu rechnen, um so die Fläche der einzelnen Quadrate zu erhalten. Die Lehrperson schreibt die Resultate an die Wandtafel. Die Lehrperson erzählt darauf der Klasse, dass der Bauer Albrecht zwei anderen Bauern von seinem Feldertausch berichtet. Die zwei anderen Bauern schreiben darauf dem Bürgermeister, denn sie wollen ebenso ihre Felder tauschen. Nun gibt die Lehrperson den Schülerinnen und Schülern den Auftrag, als Bürgermeister zu entscheiden, ob sie die Felder der zwei anderen Bauern eintauschen würden oder nicht. Die Schülerinnen und Schüler arbeiten zu zweit selbständig explorierend. Danach werden im öffentlichen Unterricht die Ergebnisse ausgetauscht. Die Klasse kommt darauf, dass die Gemeinde in einem Fall (stumpfwinkliges Dreieck - Verlängerung der Seite) profitieren würde und im anderen Fall (spitzwinkliges Dreieck - Verkürzung der Seite) ablehnen müssten, weil das nicht rentabel wäre. Die Lehrperson will darauf von der Klasse wissen, warum es Unterschiede gibt, obwohl die Grundflächen der zwei kleinen Quadrate identisch sind. In der Folge nennen die Schülerinnen und Schüler den Winkel, der ausschlaggebend ist für die Seite des großen Quadrates. Später wird der Satz des Pythagoras und der rechte Winkel von einem Schüler genannt. Darauf verteilt die Lehrperson den Schülerinnen und Schülern jeweils ein Blatt, an dessen Ecken die Schülerinnen und Schüler je ein Eselsohr machen sollen. So soll die Klasse überprüfen, ob die Behauptung stimmt, dass der Satz des Pythagoras nur in rechtwinkligen Dreiecken gilt. Die Schülerinnen und Schüler arbeiten alleine. Die Berechnung der Quadratflächen von den Seiten eines Dreiecks ist den Schülerinnen und Schüler bekannt von dieser Lektion. Die Klasse arbeitet an diesem Auftrag, bis es in die Pause klingelt. (Projekt)     less

  • Satzgruppe des Pythagoras (A15-P-1205-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn dieser Stunde begrüßen die Schülerinnen und Schüler die Lehrperson und die Herren des Forschungsinstituts stellen sich vor. Da zwei Schüler in den letzten zwei Stunden nic...    more

    Zu Beginn dieser Stunde begrüßen die Schülerinnen und Schüler die Lehrperson und die Herren des Forschungsinstituts stellen sich vor. Da zwei Schüler in den letzten zwei Stunden nicht da waren, erklären ihnen die anderen Schülerinnen und Schüler den Satz des Pythagoras. Das fällt der Klasse etwas schwer, deshalb werden sie von der Lehrperson dabei unterstützt. Die Klasse spricht ganz kurz über den Beweis mit den Schokoladentafeln der letzten Stunde. Darauf fragt die Lehrperson die Schülerinnen und Schüler, was die Eltern über den Satz des Pythagoras erzählten (Hausaufgaben) und wozu man den Satz des Pythagoras brauchen kann. Danach verteilt eine Schülerin einen Umschlag mit Puzzleteilen an alle Schülerinnen und Schüler. Im Umschlag befinden sich zwei große, grüne Dreiecke und zwei kleine, gelbe Dreiecke, sowie ein rotes und ein blaues Quadrat. Dazu erhalten die Schülerinnen und Schüler ein Arbeitsblatt, auf dem der Satz des Pythagoras grafisch dargestellt ist. Nun sollen die Schülerinnen und Schüler die Fläche c2 mit Puzzleteilen so darstellen, dass sich beweisen lässt a2 + b2 =c2. Die Schülerinnen und Schüler arbeiten in Vierergruppen. Sie folgen dabei den Arbeitsanweisungen des Arbeitsblattes. Sie bearbeiten selbständig explorierend den Zerlegungsbeweis. Nach etwas mehr als zehn Minuten unterbricht die Lehrperson die Schülerarbeitsphase und gibt den Schülerinnen und Schülern den Auftrag, die Zusammensetzung der Puzzleteile mit Bleistift auf ihr Arbeitsblatt zu übernehmen und das ganze zu Hause auszumalen. Darauf machen die Schülerinnen und Schüler ihre Arbeit so weit fertig. Nach einiger Zeit unterbricht die Lehrperson von Neuem, da die Arbeitsschritte klar sind, wird diese Arbeit als Hausaufgabe fertig gemacht. Nun erzählt die Lehrperson kurz etwas über Pythagoras und macht darauf die Schülerinnen und Schüler auf das rechtwinklige Dreieck und den Titel "Rechnen mit Pythagoras" (an der Wandtafel) aufmerksam. Gemeinsam sucht die Klasse nun den Lösungsweg und die Berechnung der längsten Seite eines rechtwinkligen Dreiecks. Das machen sie mit dem Zahlenbeispiel, welches von der Lehrperson zuvor an der Wandtafel notiert wurde. Darauf bespricht die Klasse, dass der Satz des Pythagoras die Berechnung von Strecken ermöglicht. Als nächstes Beispiel berechnet die Klasse die Diagonale eines Schrankes, um heraus zu finden, ob er durch die Zimmertür passt oder nicht. Dabei wird der Lösungsweg in der Klasse besprochen und die Schülerinnen und Schüler berechnen die Diagonale in Einzelarbeit. Dieser Auftrag ist für die Schülerinnen und Schüler einfach lösbar, da sie wissen wie eine Hypotenuse berechnet wird. Das Resultat wird im öffentlichen Unterricht besprochen. Danach legt die Lehrperson eine Folie auf den Hellraumprojektor. Auf dieser Folie geht es um die Berechnung der Hypotenuse, was den Schülerinnen und Schülern bereits bekannt ist. Die erste Aufgabe wird dabei von der ganzen Klasse gemeinsam gelöst. Für die zweite Aufgabe gibt die Lehrperson den Auftrag, die Skizze ins Heft zu übernehmen und die Hypotenuse zu berechnen. Sobald die Schülerinnen und Schüler mit der Berechnung fertig sind, gibt die Lehrperson zwei weitere Aufgaben auf. Auch diese zwei Skizzen werden von den Schülerinnen und Schülern in ihr Heft übernommen und die Hypotenuse berechnet. Zum Schluss der Stunde gibt die Lehrperson die Hausaufgaben auf. (Projekt)     less

  • Satzgruppe des Pythagoras (A16-P-1208-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll ein...    more

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll eine Umfahrungsstraße gebaut werden. Da zwei quadratische Felder des Bauern Piepenbrink genau in der Bebauungszone liegen, will ihm die Gemeinde dafür ein einziges größeres quadratisches Feld überlassen. Die Lehrperson legt eine Folie auf den Hellraumprojektor, auf der zu sehen ist, wie die Felder liegen: Sie bilden die Pythagorasfigur. Eine Schülerin misst und berechnet die Quadratflächen und stellt fest, dass die kleinen Quadrate miteinander den selben Flächeninhalt haben, wie das große. Dann liest die Lehrperson weiter aus der Geschichte vor: Bauer Piepenbrink ist zufrieden mit dem Tausch und erzählt davon am Stammtisch. Seine beiden Kollegen, Bauer Plattfuss und Bauer Grossmaul, besitzen ähnliche quadratische Felder und wollen die auch gegen ein einziges großes Feld eintauschen. Nun sehen die Schülerinnen und Schüler an der Leinwand zuerst die Felder von Bauer Plattfuss: Die drei Quadrate sind um ein stumpfwinkliges Dreieck angeordnet. Wieder werden die Flächen der Quadrate berechnet und festgestellt, dass die Fläche des großen Quadrats größer ist als die der beiden kleinen Quadrate zusammen. Auch die Felder von Bauer Grossmaul werden vermessen und ihre Flächen berechnet. Da bei ihm die Felder um ein spitzwinkliges Dreieck angeordnet sind, ist die Fläche der beiden kleineren Quadrate zusammen natürlich größer als die des großen Quadrats. Die Lehrperson teilt die drei Pläne an die Schülerinnen und Schüler aus, die nun in Gruppen darüber beraten sollen, woran es liegt, dass sich beim einen Bauer der Tausch lohnt und beim andern nicht, denn bis jetzt haben sich die Schülerinnen und Schüler ausschließlich mit den Quadraten und nicht mit den eingeschlossenen Dreiecken beschäftigt. Nach angeregten Diskussionen sammelt die Lehrperson die Erkenntnisse der Schülerinnen und Schüler im Plenum. Den meisten Schülerinnen und Schüler ist aufgefallen, dass das Dreieck zwischen den Feldern des Bauern Piepenbrink rechtwinklig ist und dass darum die Flächen der beiden kleinen Feldern zusammen gleich groß sein könnten, wie die Fläche des angrenzenden großen quadratischen Feldes. Um diese Erkenntnis zu überprüfen, messen und vergleichen die Schülerinnen und Schüler selbständig verschiedene rechtwinklige Dreiecke, die auf einem von der Lehrperson ausgeteilten Blatt abgebildet sind. Vor der Pause bespricht die Lehrperson mit der Klasse, ob durch das Messen und Berechnen die Erkenntnisse, nämlich dass die Quadrate über den Katheten zusammen gleich groß sind, wie das Hypotenusenquadrat, bzw. dass wenn eine Quadratfläche die selbe Fläche hat, wie die Flächen zwei anderer Quadrate zusammen, die eingeschlossene Figur ein rechtwinkliges Dreieck sein muss, die aus der Piepnbrink-Geschichte hervorgegangen sind, bekräftigt wurden und fasst die Erkenntnis, dass also in einem rechtwinkligen Dreieck die Summe der Flächen der Kathetenquadraten gleich der Flächen des Hypotenusenquadrats ist, noch einmal zusammen. (Projekt)    less


Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education