DE | EN
Logo fdz-Bildung
Projekt/Studie Erhebung
Downloads und Links
dauerhaft abrufbar über die DOI:
10.7477/352:1:0
[Kollektion]

Unterrichtsbeobachtung (Daten): TVD

Das Forschungsteam hat in 85 Mathematikklassen der Sekundarstufe 1 die mathematische Unterrichtseinheit zum Thema „quadratische Gleichungen“ begleitet. Um ein ganzheitliches Bild des Mathematikunterrichts zu gewinnen und Unterrichtsmerkmale mit dem Lernerfolg der Schülerinnen und Schüler in Verbindung setzen zu können, werden Videoaufzeichnungen des Unterrichts mit Leistungstests, Befragungen der Schülerinnen und Schüler sowie der Lehrkräfte verknüpft. (Projekt)    weniger

StudieTVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung

Leitung der ErhebungKlieme, Eckhard; Grünkorn, Juliane

Beteiligte Wissenschaftler/innenPraetorius, Anna-Katharina; Schreyer, Patrick; Herbert, Benjamin; Käfer, Julia

Persistent IdentifierDOI: 10.7477/352:1:0

ZitationKlieme, E.; Grünkorn, J.; Praetorius, A.-K.; Schreyer, P.; Herbert, B.; Käfer, J. (2019). TALIS-Videostudie Deutschland - Unterrichtsbeobachtung (TVD) [Datenkollektion: Version 1.0]. Datenerhebung 2017-2018. Frankfurt am Main: Forschungsdatenzentrum Bildung am DIPF. http://dx.doi.org/10.7477/352:1:0

Erhebungszeitraum01.10.2017 - 31.12.2018

Erhebungsraum (geogr.)Baden-Württemberg; Hessen; Niedersachsen; Nordrhein-Westfalen; Rheinland-Pfalz; Schleswig-Holstein; Deutschland

ErhebungsverfahrenBeobachtung: Feldbeobachtung (Nicht-teilnehmend)
Spezifikation: Videographie ; Nicht-teilnehmende Beobachtung

Spezifikation der ErhebungseinheitenLehrkräfte; Schüler

Art der Daten Qualitatives, nicht oder gering standardisiertes Datenmaterial
(Videos, Transkripte)

Sprache(n)Deutsch

Anmerkungen zu den DatenDas Forschungsdatenzentrum Bildung stellt die Unterrichtsaufzeichnungen sowie die zugehörigen Transkripte der Videostudie zur Verfügung.

ZugänglichkeitDie audiovisuellen Daten sind aus Datenschutzgründen nur für registrierte Nutzer auf Antrag zugänglich. Für den Zugriff auf die Daten ist weiterhin die Zustimmung der Urheber notwendig. Eine Rückmeldung kann in diesem Fall bis zu drei Wochen dauern. Es gelten die allgemeinen Nutzungsbedingungen des Anbieters.

Archivierende EinrichtungForschungsdatenzentrum Bildung am DIPF (FDZ Bildung)

Angaben zur DatenherkunftDatenübergabe der Videobestände in digitaler Form durch das TALIS-Team am DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation.

RechteinhaberKlieme, Eckhard
Grünkorn, Juliane
Praetorius, Anna-Katharina
Schreyer, Patrick
Herbert, Benjamin
Käfer, Julia

Veröffentlichungsdatum05.08.2019

Downloads und Links
dauerhaft abrufbar über die DOI:
10.7477/352:1:0
[Kollektion]
     1     

Daten dieser Erhebung

Suchanfrage: SINUSFUNKTION (Filter: Schlagwörter)
Anzahl der Treffer: 3
  • Unterrichtsaufzeichnung (S352_obs018)

    Thema dieser Unterrichtsstunde ist das Seitenlängenverhältnis eines rechtwinkligen Dreiecks. Nach der Begrüßung bespricht die Klasse zunächst Organisatorisches und die Hausaufgaben. Die L...    mehr

    Thema dieser Unterrichtsstunde ist das Seitenlängenverhältnis eines rechtwinkligen Dreiecks. Nach der Begrüßung bespricht die Klasse zunächst Organisatorisches und die Hausaufgaben. Die Lehrkraft visualisiert hierzu eine Graphik an das Whiteboard. Auszurechnen waren einerseits Alpha, Beta und Gamma, sowie die Strecken eines Dreiecks. Andererseits ermittelten die Schülerinnen und Schüler die fehlenden Werte mehrerer Aufgaben. Die Klasse bespricht zudem verschiedene Lösungswege. Im Anschluss daran erarbeitet die Klasse eine Textaufgabe aus dem Lehrbuch. Hierzu visualisiert die Lehrkraft eine Textaufgabe zur Steigfähigkeit von Autos und zwei Bildern mit Autos. Die Schülerinnen und Schüler berechnen den Steigungswinkel, die Höhendifferenz und erläutern, ob es ein Fahrzeug mit einer Steigfähigkeit von 100% geben könne. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Sie unterbricht zudem die Einzel- und Partnerarbeitsphase, um gemeinsam mit den Schülerinnen und Schülern einen Ansatz zur Berechnung der Steigungsfähigkeit zu besprechen. Die Lehrkraft fotografiert eine Lösung eines Schülers und nimmt diese als Diskussionsgrundlage für die Besprechung der Textaufgabe. Bevor die Stunde endet, wiederholt die Klasse die Inhalte der aktuellen Unterrichtsstunde. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs042)

    Im Zentrum dieser Unterrichtsstunde stehen periodische Funktionen. Nach der Begrüßung projiziert die Lehrkraft zu Beginn der Stunde einen Eisberg mit Sprechblasen an die Wand, die e...    mehr

    Im Zentrum dieser Unterrichtsstunde stehen periodische Funktionen. Nach der Begrüßung projiziert die Lehrkraft zu Beginn der Stunde einen Eisberg mit Sprechblasen an die Wand, die eine Schülerin vorliest. Es entstehen Gespräche zur Erderwärmung. Hierzu visualisiert die Lehrkraft die Durchschnittstemperaturen aus der Arktis. Im Anschluss daran bespricht die Klasse mit der Lehrkraft die Eigenschaften einer periodischen Funktion. Hierzu entsteht ein Tafelbild. Zudem bespricht die Klasse, wie man eine periodische Funktion modelliert beziehungsweise, welcher Term zu einer derartigen Funktion führen kann. Die Schülerinnen und Schüler bearbeiten dann in Einzelarbeit ein Arbeitsblatt, in dem nochmals die Eigenschaften und die Bedingungen für eine Sinusfunktion zu erörtern sind. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Danach besprechen die Lehrkraft und die Schülerinnen und Schüler die Ergebnisse und einen Lückentext, den die Lehrkraft an die Wand projiziert. Vier Schülerinnen und zwei Schüler füllen den Text im Klassengespräch aus. Dabei entstehen Gespräche zur Periodenlänge. Im letzten Stundendrittel greift die Lehrkraft erneut auf das Bild mit dem Eisberg zurück. Die Klasse vergleicht den Graphen der Sinusfunktion mit den Graphen der durchschnittlichen Temperaturen Alaskas. Zudem erörtert sie die Frage, inwieweit sich die Sinusfunktion zur Modellierung der Temperaturen Alaskas eigne. Zum Ende der Stunde besprechen die Klasse und die Lehrkraft die Ergebnisse. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs060)

    Im Zentrum dieser Unterrichtsdoppelstunde steht die Berechnung fehlender Seitenlängenangaben in einem Dreieck. Zur Überprüfung des Vorwissens bearbeitet die Klasse in Stillarbeit zu B...    mehr

    Im Zentrum dieser Unterrichtsdoppelstunde steht die Berechnung fehlender Seitenlängenangaben in einem Dreieck. Zur Überprüfung des Vorwissens bearbeitet die Klasse in Stillarbeit zu Beginn der Stunde einen Test. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Die Schülerinnen und Schüler tauschen die Tests untereinander aus und korrigieren diese im Klassengespräch. Einen Lösungsweg schreibt die Lehrkraft an die Tafel, um diesen gemeinsam mit der Klasse zu besprechen. Danach visualisiert die Lehrkraft ein Schaubild am interaktiven Whiteboard. Die Klasse beschreibt zunächst das Schaubild. Die Lehrkraft zeichnet ein Dreieck und einen rechten Winkel am Whiteboard auf. Die Lehrkraft teilt dann die Klasse in Gruppen ein. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Eine Gruppe stellt ihren Lösungsvorschlag vor der Klasse vor. Die Gruppe stellt dar, wie sie in der Gruppenarbeit vorgegangen sind, um f (x) zu berechnen. Die Lehrkraft stellt dann mit Hilfe des Sinussatzes einen verkürzten Rechenweg vor. Im Anschluss daran spielt die Lehrkraft einen Mathe-Song ab. Die Klasse übernimmt einen Merksatz zum Sinussatz in ihr Heft. Am interaktiven Whiteboard visualisiert die Lehrkraft dann ein weiteres, beliebiges Dreieck und die Klasse erstellt von diesem Dreieck eine Skizze. Die Schülerinnen und Schüler setzen dann verschiedene Werte in Terme ein, um die fehlenden Längen zu berechnen. In Einzelarbeit bearbeitet die Klasse drei Aufgaben aus einem Arbeitsblatt. Die Lehrkraft geht bis zum Ende der Stunde durch die Klasse und gibt Hilfestellungen. Sie teilt zum Ende der Stunde die Hausaufgaben. (DIPF/gf)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation