Logo Forschungsdaten Bildung
Suche Studien Studiendetails Erhebung
Downloads und Links
dauerhaft abrufbar über die DOI:
10.7477/1:1:1
[Videos, Transkripte, Kodierungen, Beschreibungen]
Transkriptionsmanual-Video_Pythagoras.pdf  
[Transkriptionsmanual] 64.14 kB Details

Erhebung: Unterrichtsbeobachtung: Pythagorasmodul - Pythagoras

Die Datenerhebung der videogestützten Unterrichtsstudie gliederte sich in vier Module, die im Laufe des Schuljahres 2002/03 in 20 deutschen Klassen der 9. Jahrgangsstufe und in 20 Schweizer Klassen der 8. Jahrgangsstufe durchgeführt wurden: Eingangsbefragung, Pythagorasmodul, Textaufgabenmodul und Ausgangsbefragung. Das Pythagorasmodul bestand aus der Videoaufzeichnung von drei aufeinander folgenden Lektionen zur Einführung in die Satzgruppe des Pythagoras. Neben der Standardisierung des Inhalts wurde von den Lehrpersonen zusätzlich die Verwendung eines Beweises verlangt, ansonsten waren sie frei in der didaktischen Gestaltung ihres Unterrichts, sollten jedoch einen möglichst normalen, alltäglichen Unterricht zeigen. Direkt im Anschluss an die Videografierung der Unterrichtseinheit wurden die Schüler zu den Unterrichtsstunden und ihrem Lernverhalten befragt. Im Umfeld der videografierten Pythagorasstunden wurden darüber hinaus die auf die Satzgruppe des Pythagoras bezogenen Kompetenzen der Schüler in einem Vortest und Nachtest erfasst. Außerdem wurden im Rahmen des Moduls mit den Lehrpersonen Interviews zur Reflexion der Unterrichtseinheiten und zur Erfassung von subjektiven Theorien durchgeführt. (DIPF/Projekt)    weniger

StudiePythagoras - Videogestützte Unterrichtsstudie

StudienleitungKlieme, Eckhard; Pauli, Christine; Reusser, Kurt

Persistent IdentifierDOI: 10.7477/1:1:1

Erhebungszeitraum2002 - 2003

Erhebungsraum (geogr.)Deutschland; Schweiz

ErhebungsverfahrenBeobachtung: Feldbeobachtung (Nicht-teilnehmend)
Spezifikation: Videographie

AnalyseeinheitLehrkräfte; Schüler

Art der DatenQualitatives, nicht oder gering standardisiertes Datenmaterial
(Videos, Transkripte, Kodierungen, Beschreibungen)

Sprache(n)Deutsch; Schweizerdeutsch

Anmerkungen zu den DatenZur Erhebung des Pythagorasmoduls stehen folgende Materialien zur Verfügung: Videoaufzeichnungen von beobachteten Unterrichtssituationen (in einigen Fällen steht hierzu neben der Lehrerkamera auch noch zusätzlich die Schülerkamera zur Verfügung), Transkripte der Videoaufnahmen, Fotografien der in den Unterichtseinheiten verwendeten Tafelbilder, Lektionsbeschreibungen (narrative Kurzbeschreibung des Unterrichts in den videografierten Lektionen) sowie Lektionsübersichten (tabellarische Darstellung des Ablaufs der Lektion im zeitlichen Verlauf). Die Audioaufnahmen der Interviews mit Lehrkräften, welche sich auf das Pythgorasmodul beziehen, sind in einer eigenen Erhebung erschlossen, können aber auch über die Aufzeichnungseinheiten der jeweiligen Pythagoraslektion direkt angesteuert werden.

ZugänglichkeitDie audiovisuellen Daten und die nicht anonymisierten Transkripte sind aus Datenschutzgründen nur für registrierte Nutzer auf Antrag zugänglich. Die anonymisierten Transkripte sowie die Tafelbilder sind nach der Registrierung einsehbar. Die Lektionsbeschreibungen (textuelle Beschreibung der Unterrichtssituation) und Lektionsübersichten (Kodierung der Unterrichtssituation) sind frei verfügbar. Es gelten die allgemeinen Nutzungsbedingungen des Anbieters.

Archivierende EinrichtungForschungsdatenzentrum Bildung am DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation (FDZ Bildung)

RechteinhaberKlieme, Eckhard
Pauli, Christine
Reusser, Kurt

Veröffentlichungsdatum12.06.2014

Erhebungen derselben StudieFragebogenerhebung: Eingangsbefragung - Pythagoras
Fragebogenerhebung: Zwischenbefragung - Pythagoras
Interviewerhebung - Pythagoras
Unterrichtsbeobachtung: Textaufgabenmodul - Pythagoras
Fragebogenerhebung - Pythagoras: Ausgangsbefragung

Downloads und Links
dauerhaft abrufbar über die DOI:
10.7477/1:1:1
[Videos, Transkripte, Kodierungen, Beschreibungen]
Transkriptionsmanual-Video_Pythagoras.pdf  
[Transkriptionsmanual] 64.14 kB Details

Daten dieser Erhebung

Anzahl der Treffer: 117
  • Satzgruppe des Pythagoras (A09-P-1114-Lek2)

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der L...    mehr

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson den Satz des Pythagoras als Merksatz und schreiben in ihr Theorieheft. Ein Schüler übersetzt den Merksatz in die Formel a2+ b2= c2. Um zu überprüfen, ob die Formel denn nicht auch für andere Dreiecke gelten könnte, zeichnet jeder Schüler und jede Schülerin ein beliebiges Dreieck und probiert den Satz daran aus. Die Lehrperson stellt stellvertretend für die Schülerinnen und Schüler fest, dass der Satz also nur im rechtwinkligen Dreieck gültig ist. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson die Umkehrformeln zum Satz des Pythagoras, für die sie in zwei einschrittigen Anwendungsbeispielen Verwendung finden. Von zwei gegebenen rechtwinkligen Dreiecken ist je eine Seite gesucht. Bei beiden Aufgaben wird zuerst das Vorgehen in der Klasse besprochen, dann rechnen die Schülerinnen und Schüler selbständig die fehlende Seite aus und schließlich wird die Aufgabe und deren Lösungsweg in der Klasse verglichen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A09-P-1114-Lek3)

    Zu Beginn der Lektion wird für einen am Vortag abwesenden Schüler der Satz des Pythagoras, seine Anwendung und die Bezeichnungen im rechtwinkligen Dreieck noch einmal repetiert. An...    mehr

    Zu Beginn der Lektion wird für einen am Vortag abwesenden Schüler der Satz des Pythagoras, seine Anwendung und die Bezeichnungen im rechtwinkligen Dreieck noch einmal repetiert. Anschließend führt die Lehrperson in einem Lehr-Lerngespräch den Ergänzungsbeweis. Die Schülerinnen und Schüler übernehmen den Beweis in ihr Heft, wobei die Lehrperson noch das eine oder andere Missverständnis klärt. Die Lektion endet mit einigen organisatorischen Informationen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A10-P-1117-Lek1)

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearb...    mehr

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearbeitet wird und sie nur eine zweiminütige Pause machen werden. Darauf wechselt die Lehrperson ins Englische und zeigt der Klasse einen Comic am Hellraumprojektor mit englischen Sprechblasen. Dies ist der Beginn einer zum größten Teil problemorientierten Lektion. Bei diesem Comic fragt ein Ameisenkind seinen Vater, ob es eine dumme Frage stellen dürfe. Der Vater bejaht dies ebenso auf dem ersten Bild und antwortet, dass man nur über dumme Fragen etwas lernen könne. So stellt also das Ameisenkind auf dem zweiten Bild seine Frage: „Why is the square of the hypotenus equal to the sum of the squares of the two other sides?“ Auf dem dritten Bild antwortet nun der Ameisenvater, diese Frage sei nicht blöd genug. Nun teilt die Lehrperson Auftragsblätter aus, auf welche der Comic kopiert ist und gibt den Schülerinnen und Schülern den Auftrag, den Comic zuerst in Einzelarbeit zu übersetzen und danach in Partnerarbeit zu besprechen. In der Partnerarbeit soll dabei die Frage besprochen werden, welche Aussage in der Frage des Ameisenkindes steckt. Diese zwei Aufträge stehen unterhalb des Comics auf dem Auftragsblatt. Insgesamt sind sechs Aufträge/ Themenbereiche auf diesem Arbeitsblatt notiert, welche als Programm für die nächsten drei Lektionen dienen werden. Danach arbeiten die Schülerinnen und Schüler in Einzelarbeit an der Übersetzung. Die Schülerinnen und Schüler tauschen sich dabei auch aus. Gemeinsam werden in der Klasse darauf die einzelnen Sprechblasen übersetzt. Nach dieser öffentlichen Sequenz leitet die Lehrperson über zum zweiten Auftrag und sagt, dass sie sich mit der Frage des Ameisenkindes in den nächsten Stunden beschäftigen werden. Nun übersetzen die Schülerinnen und Schüler die Frage des Ameisenkindes und die Lehrperson schreibt die Übersetzung an die Wandtafel: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Nun klärt die Klasse Begriffe dieser deutschen Übersetzung (Hypotenuse, äquivalent). Die Lehrperson informiert die Schülerinnen und Schüler darauf über das weitere Programm in den drei Lektionen und verweist dabei auf das Auftragsblatt, das die Schülerinnen und Schüler zur Hand nehmen. Die Lehrperson gibt nun den Auftrag zur Bearbeitung der nächsten Aufgabe. Es geht dabei um die Überprüfung der Frage des Ameisenkindes: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Dazu erhalten die Schülerinnen und Schüler ein Bearbeitungsblatt von der Lehrperson. Nun arbeiten die Schülerinnen und Schüler in dreier oder vierer Gruppen an ihren Gruppentischen selbständig entdeckend. Nach der Gruppenarbeit werden in einer öffentlichen Phase die Figuren des Bearbeitungsblattes besprochen. Bei diesen drei Figuren handelt es sich um die Darstellung von Dreiecken und der Quadrierung ihrer jeweiligen Seiten. Ein Dreieck ist dabei stumpfwinklig, ein anderes spitzwinklig und das dritte Dreieck ist rechtwinklig. Bei der Auswertung stellt die Lehrperson die Frage, weshalb die Aussage einmal stimmt und zweimal nicht, obwohl die drei Seiten der Dreiecke gleich lang sind. Darauf äußert eine Schülerin die Vermutung, dass diese Aussage nur bei rechtwinkligen Dreiecken zutrifft. Die Lehrperson nimmt diese Aussage auf und die Schülerinnen und Schüler überprüfen diese Vermutung, indem sie in ihre Bearbeitungsblätter drei Falze machen, wodurch rechtwinklige Dreiecke entstehen. Diese messen sie und berechnen, ob diese Aussage zutrifft. Da die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras kennen, ist das als einfache Aufgabe einzustufen. Im öffentlichen Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler danach, dass ihre Ergebnisse ungefähr stimmen und die Lehrperson erläutert die Berechnungsungenauigkeiten in Folge des Messens. Zur Bestätigung ihrer Vermutung (dass das Quadrat der Hypotenuse äquivalent ist zu der Summe der Quadrate der zwei anderen Seiten, wenn das Dreieck rechtwinklig ist) zeigt die Lehrperson am Hellraumprojektor eine Folie, auf der der Satz des Pythagoras mit Schokoladentäfelchen dargestellt wird. Danach übernehmen die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras auf ihr Auftragsblatt. Später fasst ein Schüler zusammen, was bisher in dieser Stunde behandelt wurde und äußert, dass nun die Allgemeingültigkeit dieser erarbeiteten Aussage bewiesen werden müsse. Dies bestätigt die Lehrperson. Vor einer kurzen Pause führt die Lehrperson noch kurz in den nächsten Arbeitsauftrag ein, welcher nach der Pause gelöst werden soll. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A10-P-1117-Lek2)

    Zu Beginn dieser Lektion verteilt die Lehrperson den Auftrag schriftlich. Die Schülerinnen und Schüler werden dabei angeleitet, den Ergänzungsbeweis explorativ zu entdecken. Die Lern...    mehr

    Zu Beginn dieser Lektion verteilt die Lehrperson den Auftrag schriftlich. Die Schülerinnen und Schüler werden dabei angeleitet, den Ergänzungsbeweis explorativ zu entdecken. Die Lernenden arbeiten in Zweiergruppen. Gemeinsam findet eine Auswertung der Ergebnisse statt. Dabei äußern sich die Schülerinnen und Schüler zuerst zur Frage, warum in jedem rechtwinkligen Dreieck die Summe der beiden spitzen Winkel 90° beträgt. Danach legt eine Schülerin, aufgrund der schriftlichen Anleitungen, am Hellraumprojektor die Figuren so, dass der Satz des Pythagoras grafisch dargestellt wird. Als nächstes legt eine Schülerin zwei deckungsgleiche Quadrate mit den zweifarbigen Legeformen auf den Hellraumprojektor. Diese entsprechen den zwei großen Quadraten des Ergänzungsbeweises. Danach bespricht die Klasse die Länge der jeweiligen Seiten und die Herleitung des Ergänzungsbeweises gemeinsam. Danach erklären sich die Schülerinnen und Schüler noch einmal zu zweit wie der Ergänzungsbeweis funktioniert. Darauf wird in der Klasse über die Allgemeingültigkeit dieses Beweises gesprochen. Anhand einer Hellraumprojektor-Folie nimmt die Lehrperson nun einige Begriffsklärungen vor (Hypotenuse, Katheten). Danach erzählt die Lehrperson etwas über die Herkunft des Satzes von Pythagoras (Geschichte) und wiederholt kurz und prägnant den Satz des Pythagoras und dessen Allgemeingültigkeit bei rechtwinkligen Dreiecken. Zum Schluss der Lektion verteilt die Lehrperson die Hausaufgaben. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A10-P-1117-Lek3)

    Zu Beginn dieser Stunde sitzt die Klasse im Kreis. Hausaufgabe war, den Satz des Pythagoras in verschiedenen Sprachen zu formulieren. Die Schülerinnen und Schüler haben zu Hause je...    mehr

    Zu Beginn dieser Stunde sitzt die Klasse im Kreis. Hausaufgabe war, den Satz des Pythagoras in verschiedenen Sprachen zu formulieren. Die Schülerinnen und Schüler haben zu Hause je dreimal den Satz des Pythagoras formuliert und einmal einen Fehler eingeschmuggelt. Die Lehrperson erklärt nun, wie die nächste Sequenz ablaufen wird. Gegenseitig werden die Sätze vorgelesen und die Zuhörer bewerten das Vorgelesene (Vergabe von Punkten aufgrund von Richtigkeit und Verständlichkeit: 0-3 Punkte, Originalität: 0-3 Punkte). Die Klasse setzt sich im Kreis, paarweise einander gegenüber. Der eine Partner liest dem Zuhörer die Beispiele vor und dieser bewertet die sprachliche Umsetzung nach obengenannten Kriterien. Danach lesen diejenigen, die zuvor bewertet haben ihre Beispiele vor. Auch diese werden von den Partnern bewertet. In der Folge werden die Partner zweimal gewechselt. Die Beispiele werden jeweils gegenseitig vorgelesen und bewertet. Danach setzt sich die Klasse wieder in den Kreis und drei Schülerinnen lesen je ein Beispiel vor. Darauf werden in Zweiergruppen die restlichen Hausaufgaben im Kreis korrigiert. Die Lehrperson gibt dann das Ziel dieser und folgender Lektionen bekannt und erteilt den Auftrag ein Aufgabenblatt zu lösen. Die Aufgaben des Blattes haben einen Realitätsbezug. Sie sind sehr schwierig zu lösen. Alle Aufgaben sind mehrschrittig. Teilweise müssen dabei nur Kathete und Hpotenuse berechnet werden, nachdem der rechte Winkel und die Seiten richtig identifiziert wurden. Zusätzlich müssen aber bei anderen Aufgaben Längenmasse in Massstäbe von Landkartengrösse umgerechnet werden. In einer Aufgabe ist zudem die Berechnung der Diagonalen in einem Rechteck von Bedeutung, in einer anderen Aufgabe die Berechnung der Basishöhe in einem gleichschenkligen Dreieck. Die Schülerinnen und Schüler beginnen zu zweit das Aufgabenblatt zu lösen. Die Lehrperson gibt die Hausaufgaben am Ende der Stunde auf. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A11-P-1118-Lek1)

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Geme...    mehr

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Gemeinde bittet Bauer Piepenbrink deshalb, seine zwei quadratischen Felder gegen ein drittes größeres, quadratisches Feld einzutauschen. Sein Sohn, der ebenso wie die Schüler in die neunte Klasse geht, empfiehlt seinem Vater den Tausch. Am Stammtisch unterhält er sich mit zwei anderen Landwirten, Plattfuß und Grossmaul. Die Tochter des Bauern Plattfuß geht auch in die neunte Klasse und empfiehlt auch ihrem Vater seine zwei quadratischen Felder gegen ein grösseres quadratisches Feld einzutauschen. Ebenso will es der Bauer Großmaul machen. An der Wandtafel wird die jeweilige Planskizze der drei Felder aufgehängt. Die Lehrperson hat auf aufwendige Art die Gruppeneinteilung vorbereitet. Nun versuchen die Schülerinnen und Schüler in 6 Gruppen (à 3 bis 4 Lernende) selbständig herauszufinden, ob sich der Feldertausch für den ihnen zugeteilten Bauern wirklich lohnt und weshalb. Dabei arbeiten die Lernenden mit der ihnen bekannten Maßstabsvergrösserung und der Flächenberechnung von Quadraten. In der nächsten Arbeitsphase tauschen sich jeweils zwei Gruppen aus, die den Feldertausch desselben Bauern bearbeitet haben. Anschließend stellen je zwei Schülerinnen und Schüler der Expertengruppen an der Wandtafel vor, wie sie das Problem gelöst haben. Die Lehrperson leitet mit der Frage, warum nun der eine Landwirt ein kleineres, gleichgroßes oder größeres Feld erhält, (obwohl alle kleineren Felder der Bauern gleich gross sind), zur Erarbeitung des Satzes von Pythagoras über. So kommen die Schülerinnen und Schüler im folgenden entwickelnden Lehr- und Lerngespräch einerseits auf die Dreiecke und deren Winkel zu sprechen, die von den Feldern von Großmaul (spitzwinklig), Piepenbrink (rechtwinklig) und Plattfuß (stumpfwinklig) umgeben sind. Andererseits fordert die Lehrperson die Schülerinnen und Schüler auf, eine Regel für das rechtwinklige Dreieck zu finden. Die Lernenden tragen wichtige Details zusammen und vor der Pause formuliert die Lehrperson den Satz des Pythagoras in Worten und hält ihn an der Wandtafel fest. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A11-P-1118-Lek2)

    Zu Beginn der zweiten Lektion sammelt die Lehrperson Puzzleteile der Gruppenarbeit ein sowie die sechs Protokolle der Expertengruppen und gibt den Auftrag, die Aufgabenstellungen ...    mehr

    Zu Beginn der zweiten Lektion sammelt die Lehrperson Puzzleteile der Gruppenarbeit ein sowie die sechs Protokolle der Expertengruppen und gibt den Auftrag, die Aufgabenstellungen der verschiedenen Bauern später ins Heft zu kleben. Danach fasst die Lehrperson den Satz des Pythagoras, den sie in der letzten Stunde an die Wandtafel geschrieben hat, nochmals erklärend zusammen. Anhand einer Folie zeigt die Lehrperson den Lernenden, wie man die Seiten in einem rechtwinkligen Dreieck bezeichnet (Hypotenuse und Katheten). Darauf übertragen die Schülerinnen und Schüler Zeichnung, Beschriftung und Erklärungen in ihr Heft. Aufbauend darauf verteilt die Lehrperson ein Arbeitsblatt mit sechs Aufgaben mit je einem Dreieck. Davon sind drei Dreiecke rechtwinklig und zwei Dreiecke haben keinen rechten Winkel. Die Aufgaben werden ähnlich berechnet wie die Aufgaben der letzten Stunde. Dabei werden die einzelnen Flächenquadrate über den kürzeren zwei Seiten berechnet und zusammengezählt und mit dem Flächenquadrat über der längsten Seite verglichen. Rückgreifend auf die Erkenntnisse der letzten Stunde wird zum Schluss der Aufgaben die Frage gestellt, ob den Schülerinnen und Schülern etwas beim Lösen dieser Aufgaben auffalle (Es geht dabei um den Bezug des Satzes von Pythagoras zu rechtwinkligen, stumpfwinkligen und spitzwinkligen Dreiecken). Das Arbeitsblatt wird von den Schülerinnen und Schülern alleine und selbständig bearbeitet. In der Folge werden die gelösten Aufgaben gemeinsam korrigiert. Die Frage, ob den Lernenden dabei etwas auffalle, wird im gemeinsamen Gespräch erörtert. Dabei findet die Klasse heraus, dass das Messen der Längen gewisse Ungenauigkeiten verursacht und dass der Satz des Pythagoras nur bei Dreiecken mit rechtem Winkel angewendet werden kann. Anschließend liest die Lehrperson zur nochmaligen Wiederholung den ausformulierten Satz des Pythagoras von einer Folie ab. Die Lernenden schreiben diesen in ihr Heft ab. Um die Benennung des Satzes zu klären (bisher wurde diese Regel nicht benannt), kommt die Lehrperson auf die Person des Pytharoras zu sprechen und erzählt einiges über seine Geschichte. So führt sie die Bezeichnung Lehrsatz des Pythagoras ein und die Lernenden übernehmen die Überschrift in ihr Heft. Ebenso kleben sie ein Bildchen von einer Pythagorasstatue in ihr Heft. Währenddem gibt die Lehrperson Hausaufgaben für die nächste Mathematikstunde auf. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A11-P-1118-Lek3)

    Zu Beginn der Lektion wird das Vorwissen aktiviert: Der Satz des Pythagoras wird von den Schülerinnen und Schülern nochmals benannt und erklärt. Anschließend zeigt die Lehrperson den ...    mehr

    Zu Beginn der Lektion wird das Vorwissen aktiviert: Der Satz des Pythagoras wird von den Schülerinnen und Schülern nochmals benannt und erklärt. Anschließend zeigt die Lehrperson den Inhalt der letzten zwei Lektionen nochmals auf. Anschließend leitet die Lehrperson die Schülerinnen und Schüler an, ein Arbeitsblatt zu bearbeiten. Das machen die Lernenden in Partnerarbeit. Mit dem Arbeitsblatt werden die Lernenden zum Flächenvergleich verschiedener Vierecke und Dreiecke des Ergänzungsbeweises angeleitet. Die Beweisidee soll von den Schülerinnen und Schülern selber mittels kleinschrittig aufgegebenen Aufgabenschritte gefunden werden. Nach dieser Partnerarbeit werden die Lösungen gemeinsam besprochen. Dabei geht die Lehrperson teilweise auf verschiedene Lösungswege der Schülerinnen und Schüler ein und schreibt wesentliche Schritte zur Lösung der drei Aufgaben an die Wandtafel. Dabei schreiben die Schülerinnen und Schüler allfällige Ergänzungen zu ihren Notizen ins Heft. Danach diktiert die Lehrperson den Lernenden eine kurze, prägnante Erklärung des Zerlegungsbeweises, welche die Schülerinnen und Schüler ebenso in ihr Heft schreiben. Am Hellraumprojektor stellt darauf die Lehrerin einen weiteren Lösungsweg einer Schülerin vor. Danach wird der algebraische Weg des Ergänzungsbeweises an der Wandtafel gemeinsam erarbeitet. Die Schülerinnen und Schüler schreiben das eben Erarbeitete in ihr Heft ab. Zum Schluss der Lektion werden organisatorische Dinge geregelt, bei denen es um Hausaufgaben und die nächste Mathematiklektion geht. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A12-P-1119-Lek1)

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die ...    mehr

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die Klasse die Seiten des Rechtecks und dessen Fläche sowie die Fläche der zwei Dreiecke. Nun leitet die Lehrperson die Schülerinnen und Schüler an, beim nächsten Auftrag genau so vorzugehen. Einmal sollen die Schülerinnen und Schüler von der Gesamtfläche der Figur und einmal von den Teilflächen der Figur ausgehen, um den Flächeninhalt eines Quadrates zu berechnen. Das Quadrat soll von vier kongruenten Dreiecken gebildet werden, wobei das Quadrat nicht notwendig vollständig ausgefüllt sein muss. Nach der zweifachen Berechnung des Flächeninhaltes, sollen die Schülerinnen und Schüler ihre Beobachtungen notieren. In er darauf folgenden Schülerarbeitsphase arbeiten die Schülerinnen und Schüler selbständig entdeckend. Danach werden in der Klasse die Resultate besprochen. Zuerst stellt eine Schülergruppe ihren Lösungsweg am Hellraumprojektor und an der Wandtafel vor, die Klasse und die Lehrperson ergänzen ihren Lösungsweg. Ein zweiter Lösungsweg wird von einer Schülerin am Hellraumprojektor mit Figuren gelegt. Den Lösungsweg schreibt sie an die Wandtafel. Der Lösungsweg wird durch Mitschülerinnen und Mitschüler unter Führung der Lehrperson ergänzt. Auch diese Gleichung wird aufgelöst. Bei beiden Flächengleichsetzungen ergibt sich die Lösung a2 + b2 = c2 . Nun stellt die Lehrperson die Frage, ob diese Formel für alle Dreiecke gelte. Die Lehrperson zeigt nun der Klasse mehrmals die Umwandlung der grafischen Darstellung des algebraischen Beweises zur Darstellung des Satzes von Pythagoras. Dadurch will die Lehrperson den Schülerinnen und Schülern zeigen, dass der Satz nur in rechtwinkligen Dreiecken gilt. Dies formulieren die Schülerinnen und Schüler auch gegen Ende dieser Phase. Darauf zeigt die Lehrperson an der Wandtafel, mit Unterstützung der Klasse, wie man ein rechtwinkliges Dreieck konstruiert. Zum Schluss der Stunde instruiert die Lehrperson die Klasse, wie die Seiten beschriftet werden, und dass die zwei kürzeren Seiten eines rechtwinkligen Dreiecks Katheten und die längere Seite Hypotenuse genannt wird. Danach ist Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A12-P-1119-Lek2)

    Zu Beginn der zweiten Stunde löst die Klasse verschiedene Aufgaben gemeinsam öffentlich. Bei den ersten fünf Aufgaben werden Seiten im rechtwinkligen Dreieck richtig zugeteilt (Kat...    mehr

    Zu Beginn der zweiten Stunde löst die Klasse verschiedene Aufgaben gemeinsam öffentlich. Bei den ersten fünf Aufgaben werden Seiten im rechtwinkligen Dreieck richtig zugeteilt (Katheten, Hypotenusen) und die Formel oder die Umkehrung dementsprechend aufgestellt. Diese Aufgaben sind bereits besprochenem in der ersten Pythagorasstunde ähnlich. Danach wird in der Klasse gemeinsam eine Aufgabe gelöst, bei der Zahlen eingesetzt werden, um so die Hypotenuse zu berechnen. Danach formulieren die Schülerinnen und Schüler im öffentlichen Unterricht den Satz des Pythagoras in Worten. Die mit Hilfe der Lehrperson gefundene Formulierung wird von der Lehrperson diktiert und die Schülerinnen und Schüler schreiben die Ausformulierung des Satzes in ihr Theorieheft. Danach berechnet die Klasse gemeinsam eine Aufgabe. Bei dieser Aufgabe geht es um die Berechnung der Hypotenuse. Dieser Aufgabentyp ist bereits gelösten Aufgaben ähnlich. In der Folge sollen die Schülerinnen und Schüler drei Aufgaben lösen. Bei den Aufgaben geht es um die Berechnung der Katheten. Die Schülerinnen und Schüler kennen die Kathetenberechnung sowie das Wurzelziehen. Die Aufgaben, die von den Schülerinnen und Schülern in Einzelarbeit gelöst werden, sind bereits behandelten ähnlich. Die Lehrperson unterstützt die einzelnen Schülerinnen und Schüler während dieser Arbeitsphase. Danach ruft die Lehrperson drei Schülerinnen und Schüler auf, welche je einen Lösungsweg der bearbeiteten Aufgaben an die Wandtafel schreiben. Die anderen Schülerinnen und Schüler rechnen weiter und vergleichen ihre Ergebnisse mit den an der Wandtafel notierten. In der nächsten öffentlichen Phase klärt die Lehrperson Fragen der Schülerinnen und Schüler anhand der Lösungswege an der Wandtafel und bespricht die Aufgaben. Dabei kommt die Lehrperson auf die übersichtliche Darstellung der Lösungswege zu sprechen. Als nächstes gibt die Lehrperson die Hausaufgaben auf. Danach liest die Klasse die Anleitung für eine weitere Aufgabe gemeinsam und die Lehrperson gibt kurze Anweisungen dazu. Diese Aufgabe ist mehrschrittig und es geht dabei um die Konstruktion eines Quadrates, das aus der Summe zweier kleineren Quadrate (mit vorgegebenen Seitenlängen) gebildet werden soll. Die Aufgabe wird von den Schülerinnen und Schülern in Partnerarbeit gelöst. Zum Schluss der Stunde klärt die Lehrperson organisatorische Belange bezüglich Schulräumen und Hausaufgaben. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A12-P-1119-Lek3)

    Zu Beginn dieser Lektion wird das in den letzten zwei Stunden angeeignete Wissen wiederholt. Dazwischen wird erläutert, warum die längste Seite immer gegenüber dem rechten Winkel liege...    mehr

    Zu Beginn dieser Lektion wird das in den letzten zwei Stunden angeeignete Wissen wiederholt. Dazwischen wird erläutert, warum die längste Seite immer gegenüber dem rechten Winkel liegen muss. Danach korrigiert die Klasse die Hausaufgaben. Die Lösungswege und Ergebnisse werden dabei besprochen. Dazwischen zeigt die Lehrperson der Klasse Beispiele von pythagoräischen Zahlentrippeln. Danach werden die Lösungen der Hausaufgaben zusätzlich im Bezug auf Zahlentrippel überprüft. Nach dieser öffentlichen Phase gibt die Lehrperson der Klasse den Auftrag, sich mit der Anwendung des Satzes von Pythagoras im gleichschenkligen Dreieck zu beschäftigen. Dazu wird ein gleichschenkliges Dreieck mit seiner Basishöhe von der Lehrperson an die Wandtafel gezeichnet. Gemeinsam wird das weitere Vorgehen öffentlich besprochen. Nun arbeiten die Schülerinnen und Schüler alleine, indem sie im gleichschenkligen Dreieck alle drei Höhen der Seiten und die Fläche des Dreicks berechnen. Die Aufgabe ist anspruchsvoll aufgrund ihrer Mehrschrittigkeit, obwohl das Vorgehen zuvor gemeinsam besprochen wurde. Die Schülerarbeitsphase dauert bis zur Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A13-P-1120-Lek1)

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vo...    mehr

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vorstellt und seine Erkenntnisse erklärt. Danach bittet die Lehrperson die Klasse, eine Skizze mit der Aussage des Pythagoras an die Wandtafel zu machen. Eine Schülerin skizziert darauf ein rechtwinkliges Dreieck an die Wandtafel, bezeichnet Katheten und Hypotenuse und ergänzt die Skizze des rechtwinkligen Dreiecks zur grafischen Darstellung des Satzes von Pythagoras, indem sie die Flächenquadrate über den Seiten zeichnet. Sie zeigt dabei, dass die kleinen Quadrate zusammen, das grosse Quadrat ergeben. Die Lehrperson beschriftet die Seiten des rechtwinkligen Dreiecks und die Seiten der Flächenquadrate mit a, b und c und die Flächenquadrate mit A1, A2 und A3. Darauf werden die Seiten des rechtwinkligen Dreiecks von einem Schüler mit Hypotenuse und Katheten angeschrieben. Die Lehrperson fordert darauf die Schülerinnen und Schüler auf, nun den Satz des Pythagoras mit den an die Wandtafel geschriebenen Bezeichnungen zu formulieren. Ein Schüler schreibt unter die grafische Darstellung A1+ A2= A3. Mit der Aufforderung der Lehrperson den Satz des Pythagoras mit den Bezeichnungen der Seiten anzuschreiben, notiert ein Schüler die nicht ganz korrekte Formel an die Wandtafel, die von der Klasse zu a2+ b2= c2 korrigiert wird. Danach erzählt die Lehrperson Geschichtliches zu Beweisführungen des Satzes und über die Wichtigkeit und Wirkung von Pythagoras bis hin zur Briefmarke und zur Werbung von Rittersport in unserer Zeit. Dazu befestigt die Lehrperson ein Plakat, auf dem der Satz des Pythagoras mit Rittersportschokolade dargestellt ist. In der Folge leitet die Lehrperson zum Zerlegungsbeweis über. Dazu leitet sie die Schülerinnen und Schüler an, aus zehn Figuren (Puzzleteile) und einem zusätzlichen rechtwinkligen Dreieck, die grafische Darstellung des Satzes von Pythagoras nachzubilden. Diese Arbeitsphase ist die Grundlage, für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler arbeiten dabei alleine. Der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Die Schülerarbeitsphase wird nach einer Weile von der Lehrperson unterbrochen und ein Schüler zeigt die Puzzlekombination am Helllramprojektor vor. An dieser Darstellung können sich die anderen Schülerinnen und Schüler orientieren. Ein zweiter Schüler zeichnet zur visuellen Unterstützung die Linien der Puzzleteile auf den Katheten- und dem Hypotenusenquadrat, einer vorgefertigten Skizze an der Wandtafel ein. Darauf werden die alten Puzzleteile eingesammelt und neue verteilt. Die Lehrperson erteilt einen neuen Auftrag an die Klasse. Dabei sollen die Schülerinnen und Schüler das Hypotenusen- und die Kathetenquadrate mit anderen Puzzleteilen zusammensetzten, um die grafische Darstellung des Satzes von Pythagoras zu bilden. Auch diese Arbeitsphase ist die Grundlage für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler bearbeiten den Auftrag alleine und der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Zur Kontrolle werden danach im öffentlichen Unterricht die Katheten- und Hypotenusenquadrate auf dem Hellraumprojektor (mit den Puzzleteilen) hingelegt. Dabei lösen sich verschiedene Schülerinnen und Schüler ab. Zum Schluss der Stunde überträgt ein Schüler zur visuellen Unterstützung die Linien der Puzzleteile auf eine zweite grafische Darstellung an der Wandtafel. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A13-P-1120-Lek2)

    Zu Beginn dieser Stunde versorgen die Schülerinnen und Schüler die grünen Puzzleteile in ihre Umschläge und ein Schüler sammelt sie ein. An der Wandtafel sind die zwei grafischen Dar...    mehr

    Zu Beginn dieser Stunde versorgen die Schülerinnen und Schüler die grünen Puzzleteile in ihre Umschläge und ein Schüler sammelt sie ein. An der Wandtafel sind die zwei grafischen Darstellungen des Satzes von Pythagoras mit den Einteilungen der Puzzleteile gezeichnet. Sie wurden letzte Stunde erarbeitet und gelten als Grundlage zur Beweisführung des Zerlegungsbeweises. Nun machen die Schülerinnen und Schüler in einer öffentlichen Phase mehrere Vorschläge, wie anhand dieser Darstellungen zu beweisen wäre, dass a2 + b2 = c2 ist. Dabei zeigt ein Schüler an der Wandtafel, dass sowohl die Einzelteile von a2, als auch b2 in Puzzleteilen von c2 enthalten sind. Danach werden Drehmöglichkeiten um einen Drehpunkt und das Spiegeln als Beweisidee genannt. Danach nennt die Klasse auf das Insistieren der Lehrperson hin, das Verschieben als Beweismöglichkeit. Nun werden die kongruenten Puzzleteile von a2, b2 und c2 mit jeweils derselben Farbe an der Wandtafel angemalt. In der Folge will die Lehrperson wissen, was nun entscheidend für diese Beweisführung des Satzes von Pythagoras ist. Ein Schüler nennt darauf, die Kongruenz von den Einzelteilen der Hpotenusenquadrate und Kathetenquadrate. In der Folge gibt die Lehrperson den Schülerinnen und Schülern den Auftrag, einen weiteren Beweis zu legen. Ein Schüler verteilt neue Umschläge. In jedem Umschlag stecken Puzzleteile für den Ergänzungsbeweis. Die Schülerinnen und Schüler haben den Auftrag, zwei große, deckungsgleiche Quadrate zu legen. Die Schülerinnen und Schüler arbeiten in Einzelarbeit. Die Arbeit baut auf dem Vorwissen der Schülerinnen und Schüler auf. Während dieser Schülerarbeitsphase zeichnet die Lehrperson zwei kongruente Quadrate an die Wandtafel, welche in der Folge als Vorlagen für den Ergänzungsbeweis dienen sollen. Nach einer Weile unterbricht die Lehrperson die Schülerarbeit für eine längere öffentliche Phase und zwei Schüler zeichnen zu Beginn je auf einem der Quadrate an der Wandtafel mit Linien die einzelnen Puzzleteile ein. In der Folge führt die Lehrperson das Gespräch zu den rechtwinkligen Dreiecke in diesen Darstellungen. Dabei stellt sie die Frage, wo diese rechtwinkligen Dreiecke zu finden sind. Die Schülerinnen und Schüler äußern sich dazu und bemalen die entsprechenden Seiten der rechtwinkligen Dreiecke (Hypotenuse, Kathete und Kathete) an der Wandtafel mit denselben Farben. Die Lehrperson beschriftet die Seiten jeweils mit Buchstaben und die Klasse nennt die Flächeninhalte der grossen Quadrate und bespricht die Flächeninhalte der Teilquadrate. In der Folge setzen die Schülerinnen und Schüler (weiter im öffentlichen Unterricht) die Flächen der grossen Quadrate gleich (2ab + c2 = a2 + b2 + 2ab). Die Gleichung wird aufgelöst und heraus kommt der Satz des Pythagoras. Die Lehrperson äußert, dass sie nun genug bewiesen hätten und die Puzzleteile werden in den Umschlägen wieder eingesammelt. Während der Zeit des Einsammelns zeichnet die Lehrperson ein rechtwinkliges Dreieck an die Wandtafel und beschriftet es mit Buchstaben. Eine Schülerin nennt die Formel dazu. Darauf erteilt die Lehrperson den Schülerinnen und Schülern den Auftrag dreizehn Teilaufgaben eines Arbeitsblattes zu lösen. Bei fünf Teilaufgaben geht es um das Finden der richtigen Formel, was den Schülerinnen und Schüler bereits bekannt ist. Bei einer weiteren Aufgabe mit mehreren Teilaufgaben, geht es darum in zwei großen Dreiecken verschiedenste rechtwinklige Dreiecke zu entdecken und verschiedene Seiten zu berechnen. Diese Aufgaben sind mehrschrittig und anspruchsvoll. Die Schülerinnen und Schüler arbeiten darauf in Einzelarbeit. Nach der Schülerarbeit werden die Ergebnisse der ersten fünf Teilaufgaben und die Anzahl gesuchter rechtwinkliger Dreiecke, in den nächsten Aufgaben, genannt und die Lehrperson gibt die Beendigung dieses Auftrags als Hausaufgaben auf. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A13-P-1120-Lek3)

    Zu Beginn dieser Stunde macht die Klasse einen Rückblick auf die zwei letzten Pythagoraslektionen. Dabei nennen die Schülerinnen und Schüler alle wichtigen und wesentlichen Inhalte...    mehr

    Zu Beginn dieser Stunde macht die Klasse einen Rückblick auf die zwei letzten Pythagoraslektionen. Dabei nennen die Schülerinnen und Schüler alle wichtigen und wesentlichen Inhalte. Darauf werden die Ergebnisse und der Lösungsweg der Hausaufgaben besprochen. Danach zeichnet die Lehrperson ein rechtwinkliges Dreieck an die Wandtafel, bei dem eine Kathete gesucht wird. Die Aufgabe wird öffentlich bearbeitet. Sie ist schwierig, da die Schülerinnen und Schüler bisher keine Katheten berechnet haben. Ein Schüler löst die ganze Aufgabe an der Wandtafel. Das Wurzelziehen bereitet ihm Mühe, deshalb schreibt er x= √28 cm2. Darauf fragt die Lehrperson nach einer allgemeinen Formel um x zu berechnen. Die Klasse beteiligt sich rege an der Diskussion über verschiedene Lösungsvarianten und finden zum Schluss die richtige Formel. Darauf erteilt die Lehrperson einen neuen Auftrag, Aufgabe zwei auf dem Aufgabenblatt, das die Schülerinnen und Schüler schon in der letzten Lektion erhalten haben. Die Aufgabe zwei hat fünf Teilaufgaben. Es geht dabei um die Berechnung von Hypotenusen und Katheten. Die Lösungsschritte sind den Schülerinnen und Schülern bekannt, die Aufgabe ist deshalb einfach zu lösen. Die Schülerinnen und Schüler arbeiten alleine. Nach der Schülerarbeit werden die Ergebnisse korrigiert. Danach liest eine Schülerin der Klasse eine Aufgabe vor. (Alle Schülerinnen und Schüler haben diese schriftlich vor sich liegen). Es geht dabei um einen Schwimmwettbewerb und die unterschiedlichen Längen von Schwimmstrecken, abhängig von der Startnummer der Teilnehmer. Auf dem Aufgabenblatt findet sich ein Skizze, welche die Lehrperson ebenso an die Wandtafel gezeichnet hat. Die Lehrperson sagt darauf, dass das doch ungerecht sei, dass Teilnehmer mit einer höheren Startnummer eine längere Strecke zu schwimmen haben. Darauf diskutiert die Klasse, ob die Teilnehmer mit der Startnummer 700 und 1400 tatsächlich Nachteile haben und wo die Ideallinie der Schwimmer durchgeht. Die Schülerinnen und Schüler kommen mit der Diskussion darauf dass die Schwimmstrecke (Hypotenuse) mit dem Pythagoras berechnet werden kann. Zum Schluss der Stunde gibt die Lehrperson diese Aufgabe als Hausaufgabe auf. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A14-P-1126-Lek1)

    Zu Beginn der Doppellektion gibt die Lehrperson bekannt, dass sie mit dem Thema „Geometrische Sätze“ weiterfahren möchte. Im Anschluss an die Bekanntgabe des Themas hängt sie ein Plaka...    mehr

    Zu Beginn der Doppellektion gibt die Lehrperson bekannt, dass sie mit dem Thema „Geometrische Sätze“ weiterfahren möchte. Im Anschluss an die Bekanntgabe des Themas hängt sie ein Plakat an die Wandtafel mit der Darstellung eines rechtwinkligen Dreiecks und den Quadraten über den Dreiecksseiten. Die Quadratflächen sind mit lauter gleich großen und quadratischen Schokoladenstückchen beklebt. Die Lehrperson fordert die Schülerinnen und Schüler auf, anhand der Darstellung zu entdecken, was der Satz von Pythagoras wohl aussagt. Gemeinsam finden sie heraus, dass die Quadrate über den Katheten zusammen gleich groß sein müssen wie das Quadrat über der Hypotenuse und dass der Satz nur in rechtwinkligen Dreiecken Gültigkeit hat. Nachdem eine Schülerin den Satz nochmals allgemein formuliert hat, gibt die Lehrperson folgenden Auftrag: Die Schülerinnen und Schüler sollen selbständig den Satz für sich formulieren und aufschreiben und mit einer entsprechenden Skizze ergänzen. Danach fordert die Lehrperson einige der Lernenden auf, ihre Formulierungen laut vorzutragen. Eine richtige Formulierung des Satzes schreibt die Lehrperson an die Wandtafel. Dann beschriften sie noch die Flächen der Skizze und schreiben den Satz von Pythagoras in Kurzform dazu. Anhand der Darstellung auf dem Plakat an der Wandtafel, erarbeiten sie gemeinsam eine erste Aufgabe, indem sie die entsprechenden Zahlen (Schokoladenquadrate) in die Kurzform einsetzen. Danach lösen sie ebenfalls im Klassenverband eine Aufgabe zur Berechnung der Hypotenuse, gegeben sind die beiden Katheten. Eine weitere ähnliche Aufgabe wird gelöst, diesmal soll mit Hilfe der Formel eine der Katheten berechnet werden. Anschließend lösen sie im Buch zwei Aufgaben zum Erkennen von rechtwinkligen Dreiecken. Die Schülerinnen und Schüler formulieren für alle gut hörbar die Zusammenhänge zwischen den Seitenlängen. Im Anschluss daran, erarbeitet die Lehrperson zusammen mit den Lernenden eine neue Aufgabe. Die Aufgabe besteht aus sechs ähnlichen unabhängigen Berechnungsaufgaben. Es handelt sich um rechtwinklige Dreiecke, in denen jeweils zwei Dreiecksseiten und der Ort des rechten Winkels gegeben sind. Zusammen erstellen sie die Skizze zur ersten Teilaufgabe. Die Schülerinnen und Schüler sollen mit den erarbeiteten Angaben selber die fehlende Seite berechnen. Danach kontrollieren sie gemeinsam das Ergebnis, indem sie den Lösungsweg an die Wandtafel schreiben. Im Anschluss daran sollen die Schülerinnen und Schüler selbständig drei weitere Teilaufgaben in ihr Heft lösen. Während der Einzelarbeit gibt die Lehrperson für diejenigen, welche bereits fertig sind, die beiden letzten Teilaufgaben zum Lösen. Bevor sie Pause machen, kontrollieren sie noch die ersten drei Ergebnisse, indem sie die Hypotenuse und das Resultat nennen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A14-P-1126-Lek2)

    Nach der Pause erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schülern die Umkehrungen der pythagoräischen Formel a2+b2=c2. Danach erarbeiten sie einen Beweis, indem sie...    mehr

    Nach der Pause erarbeitet die Lehrperson zusammen mit den Schülerinnen und Schülern die Umkehrungen der pythagoräischen Formel a2+b2=c2. Danach erarbeiten sie einen Beweis, indem sie den bereits bekannten Kathetensatz zu Hilfe nehmen. Anschließend sollen die Lernenden den Beweis für sich nochmals durchführen, indem sie ihn zeichnerisch darstellen und in ihrem Heft die einzelnen Schritte schriftlich in einer Gleichung festhalten. Sie dürfen mit ihrem Banknachbarn zusammenarbeiten. Danach schauen die Lehrperson und die Lernenden den Beweis nochmals an, indem eine Schülerin an der Wandtafel den Beweis rechnerisch festhält. Im Anschluss an die Darbietung der Schülerin, erklärt die Lehrperson zusammen mit den Lernenden, wieso der Satz von Pythagoras eigentlich Hypotenusensatz heißen sollte. Er notiert die nun bereits bekannten Sätze (Kathetensatz, Höhensatz, Satz von Pythagoras) an die Wandtafel und fordert die Schülerinnen und Schüler auf, diese in ihr Heft zu übernehmen. Danach besprechen sie den Anfang einer neuen mehrschrittigen Berechnungsaufgabe im rechtwinkligen Dreieck. Es geht um die Berechnung der Seilbahnlänge. Eine Schülerin erklärt, wie man die Aufgabe lösen kann. Die Lernenden sollen selbständig die von der Schülerin genannten Schritte nachvollziehen. Wer fertig ist, soll eine weitere mehrschrittige Berechnungsaufgabe lösen (Berechnen und Vergleichen eines Strassenabschnittes). Anschließend zeigt eine Schülerin einen Lösungsweg an der Wandtafel vor. Zum Schluss der Doppellektion, bevor die Schülerinnen und Schüler die Schokolade unter sich aufteilen dürfen, gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A14-P-1126-Lek3)

    Zu Beginn der Lektion fordert die Lehrperson die Lernenden auf, den Satz von Pythagoras zu repetieren. Danach kontrollieren sie die Hausaufgaben. Die Resultate werden genannt. Dana...    mehr

    Zu Beginn der Lektion fordert die Lehrperson die Lernenden auf, den Satz von Pythagoras zu repetieren. Danach kontrollieren sie die Hausaufgaben. Die Resultate werden genannt. Danach lösen sie gemeinsam eine einfache Anwendungsaufgabe zum rechtwinkligen Dreieck. Es geht um die Berechnung der Länge eines Seils. Die einzelnen Schritte (Skizze, Gleichung, Lösungsweg) werden an der Wandtafel festgehalten. Nachdem eine Schülerin einen Antwortsatz öffentlich formuliert hat, fasst die Lehrperson die drei Schritte nochmals zusammen. Danach lösen sie eine neue mehrschrittige Aufgabe, in der berechnet werden soll, in welcher Höhe ein Baum umgeknickt ist. Wiederum halten sie Schritt für Schritt an der Wandtafel fest. Mit dem Formulieren des Antwortsatzes lösen sie die Aufgabe fertig. Eine nächste sehr komplexe Aufgabe, in der berechnet werden soll, wieweit ein Brunnen von den beiden Türmen entfernt steht, lösen sie gemeinsam Schritt für Schritt bis zur Aufstellung der Gleichungen. Das Zusammenfassen und das Auflösen der Gleichungen und eine weitere angefangene Aufgabe sollen die Schülerinnen und Schüler als Hausaufgabe fertig lösen. Damit endet die Lektion. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A15-P-1205-Lek1)

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. De...    mehr

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. Der Bauer Albrecht soll dabei zwei seiner Felder gegen ein drittes tauschen, da die Bundesstrasse auf seinem Land vorbei führen soll. Die Klasse bespricht die Aufgabenstellung und die Lehrperson zeigt dazu die grafische Darstellung des Satzes von Pythagoras am Hellraumprojektor. In der Klasse wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs besprochen, ob dieser Feldertausch für den Bauer Albrecht lohnend sein kann. Ein Schüler schlägt vor, die Seiten der Quadrate zu messen und sie jeweils mal zu rechnen, um so die Fläche der einzelnen Quadrate zu erhalten. Die Lehrperson schreibt die Resultate an die Wandtafel. Die Lehrperson erzählt darauf der Klasse, dass der Bauer Albrecht zwei anderen Bauern von seinem Feldertausch berichtet. Die zwei anderen Bauern schreiben darauf dem Bürgermeister, denn sie wollen ebenso ihre Felder tauschen. Nun gibt die Lehrperson den Schülerinnen und Schülern den Auftrag, als Bürgermeister zu entscheiden, ob sie die Felder der zwei anderen Bauern eintauschen würden oder nicht. Die Schülerinnen und Schüler arbeiten zu zweit selbständig explorierend. Danach werden im öffentlichen Unterricht die Ergebnisse ausgetauscht. Die Klasse kommt darauf, dass die Gemeinde in einem Fall (stumpfwinkliges Dreieck - Verlängerung der Seite) profitieren würde und im anderen Fall (spitzwinkliges Dreieck - Verkürzung der Seite) ablehnen müssten, weil das nicht rentabel wäre. Die Lehrperson will darauf von der Klasse wissen, warum es Unterschiede gibt, obwohl die Grundflächen der zwei kleinen Quadrate identisch sind. In der Folge nennen die Schülerinnen und Schüler den Winkel, der ausschlaggebend ist für die Seite des großen Quadrates. Später wird der Satz des Pythagoras und der rechte Winkel von einem Schüler genannt. Darauf verteilt die Lehrperson den Schülerinnen und Schülern jeweils ein Blatt, an dessen Ecken die Schülerinnen und Schüler je ein Eselsohr machen sollen. So soll die Klasse überprüfen, ob die Behauptung stimmt, dass der Satz des Pythagoras nur in rechtwinkligen Dreiecken gilt. Die Schülerinnen und Schüler arbeiten alleine. Die Berechnung der Quadratflächen von den Seiten eines Dreiecks ist den Schülerinnen und Schüler bekannt von dieser Lektion. Die Klasse arbeitet an diesem Auftrag, bis es in die Pause klingelt. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A15-P-1205-Lek2)

    Zu Beginn der zweiten Stunde werden die Resultate im öffentlichen Unterricht ausgetauscht. Die Klasse kommt zur Erkenntnis, dass der Satz des Pythagoras im rechtwinkligen Dreieck ...    mehr

    Zu Beginn der zweiten Stunde werden die Resultate im öffentlichen Unterricht ausgetauscht. Die Klasse kommt zur Erkenntnis, dass der Satz des Pythagoras im rechtwinkligen Dreieck immer anwendbar ist. Messungenauigkeiten müssen dabei jedoch berücksichtigt werden. Darauf macht die Lehrperson einen Rückblick auf den Stoff der letzten Stunde. Danach nehmen die Schülerinnen und Schüler ihr Theorieheft hervor und übernehmen Titel und Notizen, welche die Lehrperson an die Wandtafel schreibt, in ihr Heft. In der nächsten öffentlichen Sequenz versucht die Klasse den Satz des Pythagoras zu versprachlichen. Die Lehrperson schreibt eine sinnvolle Formulierung an die Wandtafel, welche von den Schülerinnen und Schülern in ihr Heft übernommen wird. Darauf werden die Formel, die Formulierung des Satzes und die Verwendung der Ausdrücke Hypotenuse und Katheten im Satz öffentlich besprochen. Als nächstes macht die Lehrperson die Schülerinnen und Schüler darauf aufmerksam, dass der rechte Winkel nicht immer bei Gamma liegen muss. In der Folge werden öffentlich vier einfache Aufgaben gelöst. Danach verteilt die Lehrperson die Hausaufgaben und leitet zu einem Beweis über. Die Beweisführung will die Lehrperson mit fünfzig Tafeln Rittersport-Schokolade führen, da sie heute Geburtstag hat. Die Schülerinnen und Schüler sollen nun mit diesen Rittersport-Tafeln ein rechtwinkliges Dreieck legen. Es startet ein lauter Tumult. Nach einer gewissen Zeit schlägt eine Schülerin die Anordnung der Schokoladen zu einer grafischen Darstellung des Satzes von Pythagoras vor. Ein Schüler sagt 25 und 25 gleich 50. Die Lösung 3 mal 3, 4 mal 4 und 5 mal 5 wird von einer Schülerin genannt. Darauf legt die Schülerin die Quadratflächen 9, 16, 25. Diese bilden die Seiten des rechtwinkligen Dreiecks. Die Lehrperson wiederholt die Erkenntnis für die ganze Klasse. Die Lösung ist gefunden und die Schokolade wird verteilt. Zum Schluss der Stunde wiederholen die Schülerinnen und Schüler was sie heute über den Satz des Pythagoras erfahren haben und die Lehrperson verteilt die Hausaufgaben. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A15-P-1205-Lek3)

    Zu Beginn dieser Stunde begrüßen die Schülerinnen und Schüler die Lehrperson und die Herren des Forschungsinstituts stellen sich vor. Da zwei Schüler in den letzten zwei Stunden nic...    mehr

    Zu Beginn dieser Stunde begrüßen die Schülerinnen und Schüler die Lehrperson und die Herren des Forschungsinstituts stellen sich vor. Da zwei Schüler in den letzten zwei Stunden nicht da waren, erklären ihnen die anderen Schülerinnen und Schüler den Satz des Pythagoras. Das fällt der Klasse etwas schwer, deshalb werden sie von der Lehrperson dabei unterstützt. Die Klasse spricht ganz kurz über den Beweis mit den Schokoladentafeln der letzten Stunde. Darauf fragt die Lehrperson die Schülerinnen und Schüler, was die Eltern über den Satz des Pythagoras erzählten (Hausaufgaben) und wozu man den Satz des Pythagoras brauchen kann. Danach verteilt eine Schülerin einen Umschlag mit Puzzleteilen an alle Schülerinnen und Schüler. Im Umschlag befinden sich zwei große, grüne Dreiecke und zwei kleine, gelbe Dreiecke, sowie ein rotes und ein blaues Quadrat. Dazu erhalten die Schülerinnen und Schüler ein Arbeitsblatt, auf dem der Satz des Pythagoras grafisch dargestellt ist. Nun sollen die Schülerinnen und Schüler die Fläche c2 mit Puzzleteilen so darstellen, dass sich beweisen lässt a2 + b2 =c2. Die Schülerinnen und Schüler arbeiten in Vierergruppen. Sie folgen dabei den Arbeitsanweisungen des Arbeitsblattes. Sie bearbeiten selbständig explorierend den Zerlegungsbeweis. Nach etwas mehr als zehn Minuten unterbricht die Lehrperson die Schülerarbeitsphase und gibt den Schülerinnen und Schülern den Auftrag, die Zusammensetzung der Puzzleteile mit Bleistift auf ihr Arbeitsblatt zu übernehmen und das ganze zu Hause auszumalen. Darauf machen die Schülerinnen und Schüler ihre Arbeit so weit fertig. Nach einiger Zeit unterbricht die Lehrperson von Neuem, da die Arbeitsschritte klar sind, wird diese Arbeit als Hausaufgabe fertig gemacht. Nun erzählt die Lehrperson kurz etwas über Pythagoras und macht darauf die Schülerinnen und Schüler auf das rechtwinklige Dreieck und den Titel "Rechnen mit Pythagoras" (an der Wandtafel) aufmerksam. Gemeinsam sucht die Klasse nun den Lösungsweg und die Berechnung der längsten Seite eines rechtwinkligen Dreiecks. Das machen sie mit dem Zahlenbeispiel, welches von der Lehrperson zuvor an der Wandtafel notiert wurde. Darauf bespricht die Klasse, dass der Satz des Pythagoras die Berechnung von Strecken ermöglicht. Als nächstes Beispiel berechnet die Klasse die Diagonale eines Schrankes, um heraus zu finden, ob er durch die Zimmertür passt oder nicht. Dabei wird der Lösungsweg in der Klasse besprochen und die Schülerinnen und Schüler berechnen die Diagonale in Einzelarbeit. Dieser Auftrag ist für die Schülerinnen und Schüler einfach lösbar, da sie wissen wie eine Hypotenuse berechnet wird. Das Resultat wird im öffentlichen Unterricht besprochen. Danach legt die Lehrperson eine Folie auf den Hellraumprojektor. Auf dieser Folie geht es um die Berechnung der Hypotenuse, was den Schülerinnen und Schülern bereits bekannt ist. Die erste Aufgabe wird dabei von der ganzen Klasse gemeinsam gelöst. Für die zweite Aufgabe gibt die Lehrperson den Auftrag, die Skizze ins Heft zu übernehmen und die Hypotenuse zu berechnen. Sobald die Schülerinnen und Schüler mit der Berechnung fertig sind, gibt die Lehrperson zwei weitere Aufgaben auf. Auch diese zwei Skizzen werden von den Schülerinnen und Schülern in ihr Heft übernommen und die Hypotenuse berechnet. Zum Schluss der Stunde gibt die Lehrperson die Hausaufgaben auf. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A16-P-1208-Lek1)

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll ein...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll eine Umfahrungsstraße gebaut werden. Da zwei quadratische Felder des Bauern Piepenbrink genau in der Bebauungszone liegen, will ihm die Gemeinde dafür ein einziges größeres quadratisches Feld überlassen. Die Lehrperson legt eine Folie auf den Hellraumprojektor, auf der zu sehen ist, wie die Felder liegen: Sie bilden die Pythagorasfigur. Eine Schülerin misst und berechnet die Quadratflächen und stellt fest, dass die kleinen Quadrate miteinander den selben Flächeninhalt haben, wie das große. Dann liest die Lehrperson weiter aus der Geschichte vor: Bauer Piepenbrink ist zufrieden mit dem Tausch und erzählt davon am Stammtisch. Seine beiden Kollegen, Bauer Plattfuss und Bauer Grossmaul, besitzen ähnliche quadratische Felder und wollen die auch gegen ein einziges großes Feld eintauschen. Nun sehen die Schülerinnen und Schüler an der Leinwand zuerst die Felder von Bauer Plattfuss: Die drei Quadrate sind um ein stumpfwinkliges Dreieck angeordnet. Wieder werden die Flächen der Quadrate berechnet und festgestellt, dass die Fläche des großen Quadrats größer ist als die der beiden kleinen Quadrate zusammen. Auch die Felder von Bauer Grossmaul werden vermessen und ihre Flächen berechnet. Da bei ihm die Felder um ein spitzwinkliges Dreieck angeordnet sind, ist die Fläche der beiden kleineren Quadrate zusammen natürlich größer als die des großen Quadrats. Die Lehrperson teilt die drei Pläne an die Schülerinnen und Schüler aus, die nun in Gruppen darüber beraten sollen, woran es liegt, dass sich beim einen Bauer der Tausch lohnt und beim andern nicht, denn bis jetzt haben sich die Schülerinnen und Schüler ausschließlich mit den Quadraten und nicht mit den eingeschlossenen Dreiecken beschäftigt. Nach angeregten Diskussionen sammelt die Lehrperson die Erkenntnisse der Schülerinnen und Schüler im Plenum. Den meisten Schülerinnen und Schüler ist aufgefallen, dass das Dreieck zwischen den Feldern des Bauern Piepenbrink rechtwinklig ist und dass darum die Flächen der beiden kleinen Feldern zusammen gleich groß sein könnten, wie die Fläche des angrenzenden großen quadratischen Feldes. Um diese Erkenntnis zu überprüfen, messen und vergleichen die Schülerinnen und Schüler selbständig verschiedene rechtwinklige Dreiecke, die auf einem von der Lehrperson ausgeteilten Blatt abgebildet sind. Vor der Pause bespricht die Lehrperson mit der Klasse, ob durch das Messen und Berechnen die Erkenntnisse, nämlich dass die Quadrate über den Katheten zusammen gleich groß sind, wie das Hypotenusenquadrat, bzw. dass wenn eine Quadratfläche die selbe Fläche hat, wie die Flächen zwei anderer Quadrate zusammen, die eingeschlossene Figur ein rechtwinkliges Dreieck sein muss, die aus der Piepnbrink-Geschichte hervorgegangen sind, bekräftigt wurden und fasst die Erkenntnis, dass also in einem rechtwinkligen Dreieck die Summe der Flächen der Kathetenquadraten gleich der Flächen des Hypotenusenquadrats ist, noch einmal zusammen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A16-P-1208-Lek2)

    Zu Beginn dieser Lektion beleuchten die Schülerinnen und Schüler mit Hilfe der Lehrperson, was für theoretische Inhalte in der letzten Lektion erarbeitet wurden, losgelöst von der ...    mehr

    Zu Beginn dieser Lektion beleuchten die Schülerinnen und Schüler mit Hilfe der Lehrperson, was für theoretische Inhalte in der letzten Lektion erarbeitet wurden, losgelöst von der Hinführungsaufgabe. Dabei erhalten zwei Schüler den Auftrag, bis zur nächsten Lektion einiges über das Leben des Pythagoras herauszufinden. Dann teilt die Lehrperson eine Liste von richtigen und falschen Aussagen zum Satz des Pythagoras aus, die von den Schülerinnen und Schülern selbständig ausgewertet und anschließend in der Klasse besprochen wird. Danach zeichnen die Schülerinnen und Schüler ein vorgegebenes rechtwinkliges Dreieck in ihr Heft und überprüfen den Zusammenhang der Seitenquadrate noch einmal. Als Lösung formuliert ein Schüler den Satz des Pythagoras: a2+b2=c2. Zwei weitere gegebene Dreiecke werden konstruiert, vermessen und berechnet. Danach sind die Schülerinnen und Schüler aufgefordert selbständig den Satz des Pythagoras oder seine Verwendung allgemein zu formulieren. Dabei schreibt ein Schüler auf Wunsch der Lehrperson seinen Satz an die Wandtafel: "In einem rechtwinkligen Dreieck kann aus den beiden kurzen Seiten die dritte berechnet werden." Dies überprüfen die Schülerinnen und Schüler anschließend selbständig an einem gegebenen rechtwinkligen Dreieck. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A16-P-1208-Lek3)

    Zu Beginn der Lektion bestimmt die Klasse unter der Leitung der Lehrperson, ob es sich bei vorgegebenen Seitenlängen eines Dreiecks um ein rechtwinkliges handelt und berechnen gleich...    mehr

    Zu Beginn der Lektion bestimmt die Klasse unter der Leitung der Lehrperson, ob es sich bei vorgegebenen Seitenlängen eines Dreiecks um ein rechtwinkliges handelt und berechnen gleich anschließend die Länge einer Hypotenuse bei gegebenen Katheten. Danach halten die Schüler, die in der letzten Lektion eben diesen Auftrag gefasst haben, ihren Vortrag über das Leben und Wirken des Pythagoras. Anschließend wird der Satz des Pythagoras bewiesen: Jeder Schüler und jede Schülerin erhält einen Satz Puzzleteile (Dreiecke und Vierecke) die zu einem großen Quadrat gelegt werden sollen. Als Hilfe teilt die Lehrperson, nachdem die Schülerinnen und Schüler etwas geknobelt und teilweise auch auf richtige Lösungen gekommen sind, ein Blatt mit einer Pythagorasfigur aus, deren Quadrat der Hypotenuse genau so groß ist, wie das zu legende Quadrat. Nun sollen die Schülerinnen und Schüler zu zweit arbeiten und mit dem einen Teilchensatz das Hypothenusenquadrat und mit dem andern die Kathetenqadrate belegen. Ihre Lösung zeichnen sie auf dem Blatt ein. Wie die meisten Gruppen so weit sind, zeigt die Lehrperson einige mögliche Lösungen - denn es gibt ja mehrere - der Schülerinnen und Schüler. Danach berechnen die Schülerinnen und Schüler, ob sie eine Sperrholzplatte von vier mal zweieinhalb Meter durch die Tür in das Schulzimmer hinein tragen könnten. Mit der Erkenntnis, dass dies nicht möglich ist und dass die Platte höchstens 2,28m breit sein dürfte, ist die Lektion zu Ende. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A17-P-1218-Lek1)

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck die üblichen griechischen Bezeichnungen festgelegt und von den Schülerinnen und Schülern in ihr Theorieheft übernommen. Anschließend zeigt die Lehrperson die drei Dreiecke, die entstehen, wenn ein großes rechtwinkliges Dreieck durch die Höhe über der Hypotenuse in zwei kleine Dreiecke unterteilt wird, nebeneinander und behauptet, dass diese ähnlich sind. Auf Grund dieser Aussage nennen die Schülerinnen und Schüler den Ähnlichkeitssatz, der auf diese Behauptung zutrifft und bestätigen so die Aussage der Lehrperson. Auch diese Dreiecke werden von den Schülerinnen und Schülern in ihr Theorieheft übernommen, der Ähnlichkeitssatz dazugeschrieben. Nun stellt die Klasse verschiedene, ausgewählte Verhältnisse zwischen den Seiten der drei Dreiecke auf. Aus diesen Verhältnisgleichungen wird an der Wandtafel der Kathetensatz errechnet und anschließend von der Lehrperson, Schülerinnen und Schülern in Worte gefasst. Alles was neu an der Wandtafel erarbeitet wurde, schreiben und zeichnen die Schülerinnen und Schüler ab. Anschließend nennen die Schülerinnen und Schüler den Kathetensatz für verschiedene vorgegebene rechtwinklige Dreiecke mit unterschiedlichen Seitenbezeichnungen. Schließlich besprechen sie im Plenum, was von einem rechtwinkligen Dreieck ausgerechnet werden kann, wenn die Hypotenuse und ein Hypotenusenabschnitt gegeben ist. In Stillarbeit berechnen die Schülerinnen und Schüler zwei solche Aufgaben, welche vor dem Ende der Lektion in der Klasse besprochen werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A17-P-1218-Lek2)

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werte...    mehr

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werten selber konstruierter rechtwinkliger Dreiecke aus. In der Tabelle werden alle drei Seiten des konstruierten Dreiecks, die Hyotenusenabschnitte und die Höhe eingetragen sowie das Produkt der Hypotenusenabschnitte und das Quadrat der Höhe. Immer einige Schülerinnen und Schüler konstruieren Dreiecke mit denselben Angaben, die Hypothenuse ist für alle Schülerinnen und Schüler gleich, der erste Hypotenusenabschnitt wächst in Zentimeterschritten von einem auf acht Zentimeter. Nachdem die Resultate aller Schülerinnen und Schülern in der Tabelle am Hellraumprojektor gesammelt wurden, kommt die Klasse auf die Flächengleichheit des Rechtecks, gebildet aus den Hypotenusenabschnitten, und dem Höhenquadrat zu sprechen. Hypothetisch wird der Höhensatz formuliert. Anschließend ergänzen die Schülerinnen und Schüler die Tabelle in ihren Theorieheften selbständig. Durch Aufstellen von Verhältnisgleichungen zwischen den durch die Höhe des rechtwinkligen Dreiecks entstandenen Teildreiecke beweist die Klasse die Richtigkeit des Höhensatzes an der Wandtafel. Der Beweis wird von den Schülerinnen und Schülern in ihr Heft übernommen. Anschließend wird der Höhensatz in der Klasse in Worten ausformuliert und zum Beweis dazugeschrieben. Nun wird der Satz für rechtwinklige Dreiecke mit unüblichen Bezeichnungen verwendet. Danach berechnen die Schülerinnen und Schüler selbständig die Höhen von zwei rechtwinkligen Dreiecken, von denen die Hypotenusenabschnitte bekannt sind. Nachdem diese Berechnungen in der Klasse kontrolliert wurden, haben die Schülerinnen und Schüler Zeit, selbständig an den Hefteinträgen, die sie während dieser Doppellektion nicht fertig machen konnten, zu arbeiten. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation