DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: BEWEIS (Filter: Schlagwörter)
Anzahl der Treffer: 52
Filtern nach:
  • Satzgruppe des Pythagoras (A01-P-1101-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion werden zuerst die Hausaufgaben kontrolliert, dabei erklären die Schülerinnen und Schüler, wie sie dabei vorgegangen sind. Es handelt sich dabei um einfache Seit...    mehr

    Zu Beginn der Lektion werden zuerst die Hausaufgaben kontrolliert, dabei erklären die Schülerinnen und Schüler, wie sie dabei vorgegangen sind. Es handelt sich dabei um einfache Seitenberechnungen im rechtwinkligen Dreieck. Im Plenum führen die Schülerinnen und Schüler, angeführt von der Lehrperson den Ergänzungsbeweis und übernehmen die dazugehörenden Ausführungen in ihr Heft. Anschliessend teilt die Lehrperson aus 80 Karten an Zweierschülergruppen je eine Karte aus, auf der mehrschrittige Pythagorasaufgaben von verschiedenem Schwierigkeitsgrad zu finden sind. Die Schülerinnen und Schüler beginnen mit den einfachsten Aufgaben. Ist eine Aufgabe fertig berechnet, kann die Karte gegen eine andere ausgetauscht werden. Da sich die Lösung der Aufgabe immer hinten auf der Karte befindet, lösen und kontrollieren die Schülerinnen und Schüler von diesen Aufgaben selbständig bis zum Lektionsende. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A02-P-1103-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass heute der Satz, der am Vortag eingeführt wurde, bewiesen werden soll. In einem Lehr-Lerngespräch führt die Lehrperson den alge...    mehr

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass heute der Satz, der am Vortag eingeführt wurde, bewiesen werden soll. In einem Lehr-Lerngespräch führt die Lehrperson den algebraischen Beweis. Diesen übernehmen die Schülerinnen und Schüler von der Wandtafel in ihr Theorieheft. Wie die Schülerinnen und Schüler mit dem Abschreiben fertig sind, kommt die Lehrperson auf pythagoräische Zahlentrippel zu sprechen. Sie nennt die Zahlentrippel drei, vier, fünf und sechs, acht, zehn als Beispiel. Die Schülerinnen und Schüler nennen weitere Beispiele und suchen anschließend mit Hilfe des Taschenrechners selbständig weitere Beispiele. Nach einigen Minuten sammelt die Lehrperson die weiteren Beispiele an der Wandtafel. Anschließend löst die Klasse Übungsaufgaben. Als erstes wird im Plenum gezeigt, wie vorgegangen werden muss, wenn eine Quadratfläche, die den Summen von zwei gegebenen Quadratflächen entsprechen soll, gesucht ist. Die Schülerinnen und Schüler lösen anschließend zwei ähnliche Aufgaben selbständig. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A03-P-1104-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der ersten Lektion der Pythagorasreihe klärt die Lehrperson organisatorische Belange bezüglich der Lektion. Darauf werden die Bezeichnungen des Dreiecks anhand eines fragen...    mehr

    Zu Beginn der ersten Lektion der Pythagorasreihe klärt die Lehrperson organisatorische Belange bezüglich der Lektion. Darauf werden die Bezeichnungen des Dreiecks anhand eines fragendentwickelnden Lehrgesprächs wiederholt. In einem darstellenden Lehrgespräch erläutert die Lehrperson nun die Bezeichnung Hypotenuse und Kathete. Danach zeichnen die Schülerinnen und Schüler ein rechtwinkliges Dreieck in ihr Heft und beschriften dieses gemäß dem eben Besprochenen, das auch an der Wandtafel steht. Nun erteilt die Lehrperson einen neuen Auftrag, bei dem die Lernenden ein Dreieck mit vorgegebenen Maßen konstruieren und beschriften (drei verschiedene Maße). Die Lehrperson zeigt die Konstruktion der Flächenquadrate über der Hypotenuse und den Katheten auf, worauf die Schülerinnen und Schüler diese in einer Stillarbeitsphase konstruieren. Diese quadratische Darstellung mit Quadratflächen über den Seiten gilt im Weiteren als Grundlage, um den Satz des Pythagoras problemorientiert zu entwickeln. In der nächsten Phase mit selbständiger Schülerarbeit berechnen die Schülerinnen und Schüler die Quadratflächen der Seiten ihrer Dreiecke und erhalten zusätzlich den Auftrag, diese zu vergleichen und zu schauen, ob ihnen etwas auffällt. Im folgenden gemeinsamen Lehr- und Lerngespräch wird der Satz des Pythagoras von einer Schülerin als Formel genannt und der Lehrer bestätigt diese mit der ausformulierten Version des Satzes von Pythagoras. Zum Schluss der Lektion beginnt die Lehrperson mit der Erarbeitung eines Ergänzungsbeweises. Dabei wird der Ergänzungsbeweis mit einem Lehr- und Lerngespräch auf geometrische und mathematische Weise erarbeitet. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A03-P-1104-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach der Pause wird der Ergänzungsbeweis zu Ende geführt. Danach macht die Lehrperson einen kurzen geschichtlichen Rückblick zur Person des Pythagoras und lässt danach die Schülerinnen...    mehr

    Nach der Pause wird der Ergänzungsbeweis zu Ende geführt. Danach macht die Lehrperson einen kurzen geschichtlichen Rückblick zur Person des Pythagoras und lässt danach die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras vom Buch ins Theorieheft übernehmen. Nun erarbeitet die Lehrperson mit der Klasse die Prozedur einer Aufgabe, bei der die richtige Bestimmung von Hypotenuse und Katheten in einer Planskizze eine relevante Bedeutung hat. Anschließend lösen die Schülerinnen und Schüler eine Übungsaufgabe zur Seitenberechnung in rechtwinkligen Dreiecken. Dabei schreibt die Lehrperson den Lösungsweg an die Wandtafel. Für die zwei folgenden Aufgaben wird von jeweils einer Schülerin der Lösungsweg an die Wandtafel geschrieben, währenddem die anderen selbständig an ihren Plätzen arbeiten. Die Schülerinnen und Schüler haben genügend Zeit ihre Ergebnisse mit denjenigen an der Wandtafel zu vergleichen. Lösungswege werden nicht besprochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue...    mehr

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue Quadrate (entsprechen a2, b2) und ein grünes (entspricht c2) Quadrat. Der Auftrag dazu lautet: Vergleiche die grünen und die zwei blauen Flächen (=Grundlage für Ergänzungsbeweis). Das wird zuerst gemeinsam in der Klasse besprochen. Dabei äußern die Schülerinnen und Schüler verschiedene Vermutungen, welche Figur größer ist. In der Folge leitet die Lehrperson die Schülerinnen und Schüler an, diese Vermutungen zu überprüfen und zu begründen oder zu beweisen. Daraufhin schieben die Schülerinnen und Schüler ihre Tische zu Gruppentischen zusammen (jeweils vier bis fünf Schülerinnen und Schüler). Danach verteilt die Lehrperson Arbeitsblätter, auf denen dieselben Quadrate abgebildet sind. Die Schülerinnen und Schüler arbeiten nun in ihren Gruppen selbständig entdeckend, wobei sie die Quadrate ausschneiden/ zerschneiden oder indem sie berechnen können. Die Lehrperson unterbricht diese Sequenz und nun sammelt die Klasse die Gruppenergebnisse. Diese werden jeweils von einer Gruppe vorgestellt und die Lehrperson schreibt die Ergebnisse an die Wandtafel. Die Klasse einigt sich mehr oder weniger darauf, dass die Flächen mit Einbezug von Messungenauigkeiten gleich groß sind. Danach stellt die Lehrperson den Beginn eines mathematischen Lösungsweges einer der fünf Gruppen vor. Dieser Lösungsweg entspricht dem Ergänzungsbeweis. Die Lehrperson leitet die Gruppen nun dazu an, die zwei Flächen c2+ vier Dreiecke und a2+ b2+ vier Dreiecke zu berechnen und zu vergleichen. In der Klasse wird aufgrund von Schwierigkeiten einzelner Schülerinnen und Schüler das Vorgehen schrittweise besprochen und von Schülerinnen und Schülern erklärt. Die Lösungen berechnen die Schülerinnen und Schüler in Vierer- oder Fünfergruppen. Die Gruppenarbeit wird durch eine Pause unterbrochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen ...    mehr

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen hat. Die Schülerinnen und Schüler arbeiten in Vierer- oder Fünfergruppen. Sie arbeiten selbständig explorierend. Gemeinsam in der Klasse wird anschließend die mathematische Herleitung des Ergänzungsbeweises nachvollzogen und zur Formel a2+ b2= c2 aufgelöst. (Berechnung der jeweiligen Flächen von a2, b2, vier kongruenten rechtwinkligen Dreiecken/ die Flächen von c2, vier kongruenten rechtwinkligen Dreiecken. Gleichsetzung der beiden grossen Quadrate und die Auflösung davon). Somit ist bewiesen, dass a2+ b2= c2 ist. Danach zeigt die Lehrperson auf dem Hellraumprojektor eine Darstellung und benennt diese als Darstellung des Satzes von Pythagoras. Ein Schüler nennt dazu die Formel a2+ b2= c2. Danach übernehmen die Schülerinnen und Schüler die grafische Darstellung, die Ausformulierung sowie Formel und Titel des Satzes von Pythagoras in ihr Theorieheft. Die Lehrperson bricht die Einzelarbeit am Ende der Stunde ab. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A05-P-1107-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identisch...    mehr

    Nach einigen organisatorischen Äußerungen gibt die Lehrperson das neue Thema bekannt: der Satz von Pythagoras. Die Schülerinnen und Schüler erhalten ein Blatt, auf dem vier identische Rechtecke mit den Seiten a und b zu einem Quadrat zusammengefügt wurden, so dass in der Mitte ein kleines Quadrat mit der Seitenlänge (a-b) entsteht. Als erstes schreiben die Schülerinnen und Schüler alle Teilseiten des großen Quadrates mit a und b an. Dann wird in der Klasse die Fläche des Quadrates durch a und b ausgedrückt und an der Wandtafel aufgeschrieben. Anschließend zeichnen die Schülerinnen und Schüler die Diagonalen der Rechtecke, die sie c nennen, ein, so dass diese ein neues Quadrat bilden. In der Klasse wir vor allem durch die Lehrperson gezeigt, dass es sich dabei auch tatsächlich um ein Quadrat handelt. Von dieser neuen Figur (ein Quadrat, bestehend aus vier rechtwinkligen Dreiecken und einem kleineren Quadrat) wird die gesamte Fläche durch die Teilflächen ausgedrückt und mit der ersten Gleichung gleichgesetzt. An der Wandtafel wird die Gleichung nun auf den Satz des Pythagoras vereinfacht. Die ganze Herleitung wird von den Schülerinnen und Schülern auf das Blatt abgeschrieben. Anschließend wendet sich die Klasse der Verwendung des Satzes von Pythagoras zu. Mit Hilfe der Lehrperson wird die Formel zur Berechnung der Quadratdiagonalen hergeleitet. Danach werden ganzzahlige pythagoräische Zahlentrippel gesucht und benannt. Die griechischen Bezeichnungen für die Seiten im rechtwinkligen Dreieck werden repetiert und auf die pythagoräischen Zahlentrippel angewendet. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A06-P-1109-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    In einem entwickelnden Lehr- und Lerngepräch wird zu Beginn der zweiten Stunde erörtert, wozu der Satz des Pythagoras heute noch verwendet wird. Danach erarbeitet die Lehrperson mit ...    mehr

    In einem entwickelnden Lehr- und Lerngepräch wird zu Beginn der zweiten Stunde erörtert, wozu der Satz des Pythagoras heute noch verwendet wird. Danach erarbeitet die Lehrperson mit der Klasse die Prozedur einer Aufgabe, bei der eine Kathete berechnet werden muss. Darauf gibt die Lehrperson den Auftrag für eine weitere Berechnung, die der vorhergehenden ähnlich ist. Die Seiten sind jedoch mit anderen Variablen bezeichnet. Zur Überprüfung dieser Rechnung schreibt ein Schüler den Lösungsweg und das Ergebnis an die Wandtafel, der Lehrer ergänzt die Wandtafelanschrift und empfiehlt den Schülerinnen und Schülern danach, immer zuerst den Satz des Pythagoras als Formel mit den entsprechenden Variablen aufzuschreiben, um so Fehler zu vermeiden. Darauf teilt die Lehrperson ein Blatt aus. Auf diesem steht die nächste Aufgabe. Die Lösungsprozedur der Aufgabe wird im Klassenverband entwickelt. Es geht dabei um die Anwendung des Pythagoras bei der Berechnung einer neuen Niederschlagswassergebühr in Darmstadt (wobei die Berechnung der Dachfläche wichtig ist ). Nach dem Abschluss dieser Aufgabe verteilt die Lehrperson ein neues Aufgabenblatt, auf dem eine griechische Briefmarke abgebildet ist. Sie stellt den Zerlegungsbeweis dar mit dem bekannten Zahlentrippel (3,4,5). Die Klasse überprüft rechnerisch, ob die Darstellung stimmt. In der Folge erteilt die Lehrperson den Auftrag fünf Teilaufgaben zu lösen. Die Schülerinnen und Schüler lösen diese in Einzelarbeit. Die Aufgaben sind dem bereits Bekannten ähnlich. Es geht dabei um die richtige Darstellung einer Planskizze anhand der pythagoräischen Formel. Die Ergebnisse werden gemeinsam öffentlich korrigiert. In der Folge erteilt die Lehrperson einen neuen Auftrag. Die Lernenden bearbeiten eine Aufgabe mit fünf Teilaufgaben, bei denen je die Länge einer Seite des Dreiecks berechnet wird. Diese Aufgaben sind den bereits gelösten ähnlich und bauen auf Bekanntem auf. Gemeinsam werden die Ergebnisse korrigiert, dazwischen gibt die Lehrperson Hausaufgaben auf. Zum Abschluss der Stunde gibt die Lehrperson noch kurz bekannt, was die Klassse in der nächsten Stunde behandeln wird. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A06-P-1109-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der dritten Lektion der Pythagorasreihe werden die Hausaufgaben gemeinsam kontrolliert. Danach erklärt die Lehrperson, dass die Klasse sich in dieser Stunde zu Beginn mit d...    mehr

    Zu Beginn der dritten Lektion der Pythagorasreihe werden die Hausaufgaben gemeinsam kontrolliert. Danach erklärt die Lehrperson, dass die Klasse sich in dieser Stunde zu Beginn mit dem Flächenzerlegungsbeweis beschäftigen wird. Deren drei werden in der gesamten Lektion bearbeitet. Die ersten beiden Beweisideen entdecken die Schülerinnen handelnd in zwei aufeinanderfolgenden Schülerarbeitsphasen. Die von der Lehrperson korrigierten Arbeiten werden eingeklebt. Der dritte Beweis wird öffentlich bearbeitet, wobei ihn ein Schüler am Hellraumprojektor zu legen versucht. Das Vorgehen beim Zerlegungsbeweis wird anschliessend an der Wandtafel mit magnetischen Dreiecken und Vierecken von einem weiteren Schüler nachvollzogen und danach gemeinsam besprochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A07-P-1110-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zuerst werden die Hausaufgaben von der Lehrperson angeschaut und gemeinsam korrigiert. Bei zwei Aufgaben werden die Lösungswege besprochen. Zwischen der Korrektur der einzelnen Auf...    mehr

    Zuerst werden die Hausaufgaben von der Lehrperson angeschaut und gemeinsam korrigiert. Bei zwei Aufgaben werden die Lösungswege besprochen. Zwischen der Korrektur der einzelnen Aufgaben nimmt die Lehrperson Bezug auf bekannte Inhalte. Dabei erklären die Schülerinnen und Schüler den Bezug von Katheten und Hypotenuse zum rechten Winkel und definieren den Kehrsatz. Danach erzählt die Lehrperson kurz etwas zur Person des Pythagoras und kommt dabei auf die grafische Darstellung des Satzes zu sprechen. Zwei Schüler heften drei Quadrate und ein vorgefertigtes Dreieck so an die Pinwand, dass sie die pythagoräische Formel grafisch darstellen. Während eines entwickelnden Lehr- und Lerngespräch bespricht die Klasse mit der Lehrperson den Zusammenhang zwischen der Formel und der graphischen Darstellung des Satzes von Pythagoras. Die Behauptung des Pythagoras sei, so fährt die Lehrperson weiter, dass ein Dreieck dann rechtwinklig ist, wenn die beiden Flächenquadrate über den Katheten zusammen so groß sind wie das Flächenquadrat über der Hypotenuse. Mit der Aussage, dass in der Mathematik eine Aussage auch immer bewiesen sein muss, leitet sie zu einem Beweis über. Als erstes kommt die Klasse anhand eines entwickelnden Lehr- und Lerngespräch auf die Beweismöglichkeit der Zerlegung zu sprechen. In der Folge werden die Schülerinnen und Schüler von der Lehrperson instruiert, anhand eines Arbeitsblattes einen Ergänzungsbeweis zu erarbeiten. Die Schülerinnen und Schüler arbeiten in Gruppen an ihren Gruppentischen selbständig explorierend. Drei Schülerinnen und Schüler, die mit ihrer Arbeit bereits fertig sind, heften nach einiger Zeit mit Unterstützung der Lehrperson die zwei Figuren des Ergänzungsbeweises zur Veranschaulichung von diesem an die Pinwand. Währenddem arbeiten die anderen Schülerinnen und Schüler an ihren Plätzen weiter. Während der Besprechung der Lösungen klingelt es in die Pause. Die Lehrperson verschiebt die weitere Auswertung auf die nächste Stunde und verteilt zum Schluss die Hausaufgaben auf die nächste Stunde. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation