DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: VORBEREITUNG (Filter: Schlagwörter)
Anzahl der Treffer: 16
  • Satzgruppe des Pythagoras (A09-P-1114-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des...    mehr

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des Satzes von Pythagoras damit ein, dass sie den Schülerinnen und Schülern sagt, dass sie heute ein Phänomen kennenlernen, mit dem sich die Ägypter schon beschäftigt haben. Anhand eines Bildes von ägyptischen Pyramiden sollen die Schülerinnen und Schüler in der Klasse überlegen, wie im Wüstensand die Grundfläche der Pyramide wohl rechtwinklig abgesteckt werden könnte. Die Schülerinnen und Schüler äußern verschiedene, jedoch unbrauchbare Ideen zur Lösung dieses Problems. Schließlich teilt die Lehrperson vorbereitete Knotenschnüre an Schülergruppen aus. In diesen Gruppen sollen die Schülerinnen und Schüler nun selbständig herausfinden, wie mit Hilfe einer solchen Schnur ein rechter Winkel gelegt werden kann. Dank anregender Tipps der Lehrperson gelingt es schließlich allen Gruppen ein rechtwinkliges Dreieck mit den Seitenverhältnissen drei, vier, fünf zu legen. Anschließend wird die Lösung kurz an der Wandtafel dargestellt. Nachdem die Begriffe Kathete und Hypotenuse wieder ins Gedächtnis gerufen wurden, versucht die Klasse hinter den Zusammenhang der drei Zahlen drei, vier und fünf zu kommen. Im Plenum werden verschiedene Rechenoperationen getestet, auch das Quadrieren. Dabei wird die These aufgestellt, dass die Summe der Flächen der beiden Kathetenquadrate die Fläche des Hypotenusenquadrates ergibt. Zu dieser Annahme sollen die Schülerinnen und Schüler bis zur Pause selbständig weitere ganzzahlige Beispiele suchen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A10-P-1117-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearb...    mehr

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearbeitet wird und sie nur eine zweiminütige Pause machen werden. Darauf wechselt die Lehrperson ins Englische und zeigt der Klasse einen Comic am Hellraumprojektor mit englischen Sprechblasen. Dies ist der Beginn einer zum größten Teil problemorientierten Lektion. Bei diesem Comic fragt ein Ameisenkind seinen Vater, ob es eine dumme Frage stellen dürfe. Der Vater bejaht dies ebenso auf dem ersten Bild und antwortet, dass man nur über dumme Fragen etwas lernen könne. So stellt also das Ameisenkind auf dem zweiten Bild seine Frage: „Why is the square of the hypotenus equal to the sum of the squares of the two other sides?“ Auf dem dritten Bild antwortet nun der Ameisenvater, diese Frage sei nicht blöd genug. Nun teilt die Lehrperson Auftragsblätter aus, auf welche der Comic kopiert ist und gibt den Schülerinnen und Schülern den Auftrag, den Comic zuerst in Einzelarbeit zu übersetzen und danach in Partnerarbeit zu besprechen. In der Partnerarbeit soll dabei die Frage besprochen werden, welche Aussage in der Frage des Ameisenkindes steckt. Diese zwei Aufträge stehen unterhalb des Comics auf dem Auftragsblatt. Insgesamt sind sechs Aufträge/ Themenbereiche auf diesem Arbeitsblatt notiert, welche als Programm für die nächsten drei Lektionen dienen werden. Danach arbeiten die Schülerinnen und Schüler in Einzelarbeit an der Übersetzung. Die Schülerinnen und Schüler tauschen sich dabei auch aus. Gemeinsam werden in der Klasse darauf die einzelnen Sprechblasen übersetzt. Nach dieser öffentlichen Sequenz leitet die Lehrperson über zum zweiten Auftrag und sagt, dass sie sich mit der Frage des Ameisenkindes in den nächsten Stunden beschäftigen werden. Nun übersetzen die Schülerinnen und Schüler die Frage des Ameisenkindes und die Lehrperson schreibt die Übersetzung an die Wandtafel: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Nun klärt die Klasse Begriffe dieser deutschen Übersetzung (Hypotenuse, äquivalent). Die Lehrperson informiert die Schülerinnen und Schüler darauf über das weitere Programm in den drei Lektionen und verweist dabei auf das Auftragsblatt, das die Schülerinnen und Schüler zur Hand nehmen. Die Lehrperson gibt nun den Auftrag zur Bearbeitung der nächsten Aufgabe. Es geht dabei um die Überprüfung der Frage des Ameisenkindes: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Dazu erhalten die Schülerinnen und Schüler ein Bearbeitungsblatt von der Lehrperson. Nun arbeiten die Schülerinnen und Schüler in dreier oder vierer Gruppen an ihren Gruppentischen selbständig entdeckend. Nach der Gruppenarbeit werden in einer öffentlichen Phase die Figuren des Bearbeitungsblattes besprochen. Bei diesen drei Figuren handelt es sich um die Darstellung von Dreiecken und der Quadrierung ihrer jeweiligen Seiten. Ein Dreieck ist dabei stumpfwinklig, ein anderes spitzwinklig und das dritte Dreieck ist rechtwinklig. Bei der Auswertung stellt die Lehrperson die Frage, weshalb die Aussage einmal stimmt und zweimal nicht, obwohl die drei Seiten der Dreiecke gleich lang sind. Darauf äußert eine Schülerin die Vermutung, dass diese Aussage nur bei rechtwinkligen Dreiecken zutrifft. Die Lehrperson nimmt diese Aussage auf und die Schülerinnen und Schüler überprüfen diese Vermutung, indem sie in ihre Bearbeitungsblätter drei Falze machen, wodurch rechtwinklige Dreiecke entstehen. Diese messen sie und berechnen, ob diese Aussage zutrifft. Da die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras kennen, ist das als einfache Aufgabe einzustufen. Im öffentlichen Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler danach, dass ihre Ergebnisse ungefähr stimmen und die Lehrperson erläutert die Berechnungsungenauigkeiten in Folge des Messens. Zur Bestätigung ihrer Vermutung (dass das Quadrat der Hypotenuse äquivalent ist zu der Summe der Quadrate der zwei anderen Seiten, wenn das Dreieck rechtwinklig ist) zeigt die Lehrperson am Hellraumprojektor eine Folie, auf der der Satz des Pythagoras mit Schokoladentäfelchen dargestellt wird. Danach übernehmen die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras auf ihr Auftragsblatt. Später fasst ein Schüler zusammen, was bisher in dieser Stunde behandelt wurde und äußert, dass nun die Allgemeingültigkeit dieser erarbeiteten Aussage bewiesen werden müsse. Dies bestätigt die Lehrperson. Vor einer kurzen Pause führt die Lehrperson noch kurz in den nächsten Arbeitsauftrag ein, welcher nach der Pause gelöst werden soll. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A11-P-1118-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Geme...    mehr

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Gemeinde bittet Bauer Piepenbrink deshalb, seine zwei quadratischen Felder gegen ein drittes größeres, quadratisches Feld einzutauschen. Sein Sohn, der ebenso wie die Schüler in die neunte Klasse geht, empfiehlt seinem Vater den Tausch. Am Stammtisch unterhält er sich mit zwei anderen Landwirten, Plattfuß und Grossmaul. Die Tochter des Bauern Plattfuß geht auch in die neunte Klasse und empfiehlt auch ihrem Vater seine zwei quadratischen Felder gegen ein grösseres quadratisches Feld einzutauschen. Ebenso will es der Bauer Großmaul machen. An der Wandtafel wird die jeweilige Planskizze der drei Felder aufgehängt. Die Lehrperson hat auf aufwendige Art die Gruppeneinteilung vorbereitet. Nun versuchen die Schülerinnen und Schüler in 6 Gruppen (à 3 bis 4 Lernende) selbständig herauszufinden, ob sich der Feldertausch für den ihnen zugeteilten Bauern wirklich lohnt und weshalb. Dabei arbeiten die Lernenden mit der ihnen bekannten Maßstabsvergrösserung und der Flächenberechnung von Quadraten. In der nächsten Arbeitsphase tauschen sich jeweils zwei Gruppen aus, die den Feldertausch desselben Bauern bearbeitet haben. Anschließend stellen je zwei Schülerinnen und Schüler der Expertengruppen an der Wandtafel vor, wie sie das Problem gelöst haben. Die Lehrperson leitet mit der Frage, warum nun der eine Landwirt ein kleineres, gleichgroßes oder größeres Feld erhält, (obwohl alle kleineren Felder der Bauern gleich gross sind), zur Erarbeitung des Satzes von Pythagoras über. So kommen die Schülerinnen und Schüler im folgenden entwickelnden Lehr- und Lerngespräch einerseits auf die Dreiecke und deren Winkel zu sprechen, die von den Feldern von Großmaul (spitzwinklig), Piepenbrink (rechtwinklig) und Plattfuß (stumpfwinklig) umgeben sind. Andererseits fordert die Lehrperson die Schülerinnen und Schüler auf, eine Regel für das rechtwinklige Dreieck zu finden. Die Lernenden tragen wichtige Details zusammen und vor der Pause formuliert die Lehrperson den Satz des Pythagoras in Worten und hält ihn an der Wandtafel fest. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A13-P-1120-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vo...    mehr

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vorstellt und seine Erkenntnisse erklärt. Danach bittet die Lehrperson die Klasse, eine Skizze mit der Aussage des Pythagoras an die Wandtafel zu machen. Eine Schülerin skizziert darauf ein rechtwinkliges Dreieck an die Wandtafel, bezeichnet Katheten und Hypotenuse und ergänzt die Skizze des rechtwinkligen Dreiecks zur grafischen Darstellung des Satzes von Pythagoras, indem sie die Flächenquadrate über den Seiten zeichnet. Sie zeigt dabei, dass die kleinen Quadrate zusammen, das grosse Quadrat ergeben. Die Lehrperson beschriftet die Seiten des rechtwinkligen Dreiecks und die Seiten der Flächenquadrate mit a, b und c und die Flächenquadrate mit A1, A2 und A3. Darauf werden die Seiten des rechtwinkligen Dreiecks von einem Schüler mit Hypotenuse und Katheten angeschrieben. Die Lehrperson fordert darauf die Schülerinnen und Schüler auf, nun den Satz des Pythagoras mit den an die Wandtafel geschriebenen Bezeichnungen zu formulieren. Ein Schüler schreibt unter die grafische Darstellung A1+ A2= A3. Mit der Aufforderung der Lehrperson den Satz des Pythagoras mit den Bezeichnungen der Seiten anzuschreiben, notiert ein Schüler die nicht ganz korrekte Formel an die Wandtafel, die von der Klasse zu a2+ b2= c2 korrigiert wird. Danach erzählt die Lehrperson Geschichtliches zu Beweisführungen des Satzes und über die Wichtigkeit und Wirkung von Pythagoras bis hin zur Briefmarke und zur Werbung von Rittersport in unserer Zeit. Dazu befestigt die Lehrperson ein Plakat, auf dem der Satz des Pythagoras mit Rittersportschokolade dargestellt ist. In der Folge leitet die Lehrperson zum Zerlegungsbeweis über. Dazu leitet sie die Schülerinnen und Schüler an, aus zehn Figuren (Puzzleteile) und einem zusätzlichen rechtwinkligen Dreieck, die grafische Darstellung des Satzes von Pythagoras nachzubilden. Diese Arbeitsphase ist die Grundlage, für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler arbeiten dabei alleine. Der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Die Schülerarbeitsphase wird nach einer Weile von der Lehrperson unterbrochen und ein Schüler zeigt die Puzzlekombination am Helllramprojektor vor. An dieser Darstellung können sich die anderen Schülerinnen und Schüler orientieren. Ein zweiter Schüler zeichnet zur visuellen Unterstützung die Linien der Puzzleteile auf den Katheten- und dem Hypotenusenquadrat, einer vorgefertigten Skizze an der Wandtafel ein. Darauf werden die alten Puzzleteile eingesammelt und neue verteilt. Die Lehrperson erteilt einen neuen Auftrag an die Klasse. Dabei sollen die Schülerinnen und Schüler das Hypotenusen- und die Kathetenquadrate mit anderen Puzzleteilen zusammensetzten, um die grafische Darstellung des Satzes von Pythagoras zu bilden. Auch diese Arbeitsphase ist die Grundlage für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler bearbeiten den Auftrag alleine und der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Zur Kontrolle werden danach im öffentlichen Unterricht die Katheten- und Hypotenusenquadrate auf dem Hellraumprojektor (mit den Puzzleteilen) hingelegt. Dabei lösen sich verschiedene Schülerinnen und Schüler ab. Zum Schluss der Stunde überträgt ein Schüler zur visuellen Unterstützung die Linien der Puzzleteile auf eine zweite grafische Darstellung an der Wandtafel. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A17-P-1218-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck die üblichen griechischen Bezeichnungen festgelegt und von den Schülerinnen und Schülern in ihr Theorieheft übernommen. Anschließend zeigt die Lehrperson die drei Dreiecke, die entstehen, wenn ein großes rechtwinkliges Dreieck durch die Höhe über der Hypotenuse in zwei kleine Dreiecke unterteilt wird, nebeneinander und behauptet, dass diese ähnlich sind. Auf Grund dieser Aussage nennen die Schülerinnen und Schüler den Ähnlichkeitssatz, der auf diese Behauptung zutrifft und bestätigen so die Aussage der Lehrperson. Auch diese Dreiecke werden von den Schülerinnen und Schülern in ihr Theorieheft übernommen, der Ähnlichkeitssatz dazugeschrieben. Nun stellt die Klasse verschiedene, ausgewählte Verhältnisse zwischen den Seiten der drei Dreiecke auf. Aus diesen Verhältnisgleichungen wird an der Wandtafel der Kathetensatz errechnet und anschließend von der Lehrperson, Schülerinnen und Schülern in Worte gefasst. Alles was neu an der Wandtafel erarbeitet wurde, schreiben und zeichnen die Schülerinnen und Schüler ab. Anschließend nennen die Schülerinnen und Schüler den Kathetensatz für verschiedene vorgegebene rechtwinklige Dreiecke mit unterschiedlichen Seitenbezeichnungen. Schließlich besprechen sie im Plenum, was von einem rechtwinkligen Dreieck ausgerechnet werden kann, wenn die Hypotenuse und ein Hypotenusenabschnitt gegeben ist. In Stillarbeit berechnen die Schülerinnen und Schüler zwei solche Aufgaben, welche vor dem Ende der Lektion in der Klasse besprochen werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A17-P-1218-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werte...    mehr

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werten selber konstruierter rechtwinkliger Dreiecke aus. In der Tabelle werden alle drei Seiten des konstruierten Dreiecks, die Hyotenusenabschnitte und die Höhe eingetragen sowie das Produkt der Hypotenusenabschnitte und das Quadrat der Höhe. Immer einige Schülerinnen und Schüler konstruieren Dreiecke mit denselben Angaben, die Hypothenuse ist für alle Schülerinnen und Schüler gleich, der erste Hypotenusenabschnitt wächst in Zentimeterschritten von einem auf acht Zentimeter. Nachdem die Resultate aller Schülerinnen und Schülern in der Tabelle am Hellraumprojektor gesammelt wurden, kommt die Klasse auf die Flächengleichheit des Rechtecks, gebildet aus den Hypotenusenabschnitten, und dem Höhenquadrat zu sprechen. Hypothetisch wird der Höhensatz formuliert. Anschließend ergänzen die Schülerinnen und Schüler die Tabelle in ihren Theorieheften selbständig. Durch Aufstellen von Verhältnisgleichungen zwischen den durch die Höhe des rechtwinkligen Dreiecks entstandenen Teildreiecke beweist die Klasse die Richtigkeit des Höhensatzes an der Wandtafel. Der Beweis wird von den Schülerinnen und Schülern in ihr Heft übernommen. Anschließend wird der Höhensatz in der Klasse in Worten ausformuliert und zum Beweis dazugeschrieben. Nun wird der Satz für rechtwinklige Dreiecke mit unüblichen Bezeichnungen verwendet. Danach berechnen die Schülerinnen und Schüler selbständig die Höhen von zwei rechtwinkligen Dreiecken, von denen die Hypotenusenabschnitte bekannt sind. Nachdem diese Berechnungen in der Klasse kontrolliert wurden, haben die Schülerinnen und Schüler Zeit, selbständig an den Hefteinträgen, die sie während dieser Doppellektion nicht fertig machen konnten, zu arbeiten. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A19-P-1223-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dies...    mehr

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dieser Darstellung teilt sie auch an die Schülerinnen und Schüler aus. Ihre Aufgabe ist es, zu zweit den Lösungsweg zur Berechnung der Länge der für die Herstellung eines solchen Daches benötigten Dachsparren zu finden, wenn das Dreieck, das die beiden Dachschrägen und die Parallele zum Boden bilden, im Giebel rechtwinklig ist. Auch die Länge eines solchen Teildaches und der Punkt, wo dieses von der Höhe durch den Giebel geteilt wird, sind den Schülerinnen und Schülern bekannt. Nach etwa zehn Minuten wird im Plenum besprochen, auf was für Lösungsansätze die Schülerinnen und Schüler gekommen sind. Eine Schülerin schlägt vor, das Dreieck zu konstruieren und die Länge der Dachsparren durch Messen zu bestimmen. Auch fällt das Stichwort "Strahlensätze", woran die Lehrperson das weiterführende Lehr-Lerngespräch anknüpft. An der Wandtafel hängt die Lehrperson ein rechtwinkliges Dreieck aus braunem Papier auf und lässt einen Schüler die zwei Teildreiecke aus blauem Papier, die durch das Einzeichnen der Höhe entstünden, exakt darüber hängen. Dieser Schüler ist es auch, der behauptet, alle diese Papierdreiecke seien zueinander ähnlich. Dies wird durch die Lehrperson bestätigt und für die anderen Schülerinnen und Schüler durchsichtig gemacht. Nun hängt die Lehrperson ein weiteres zum braunen Dreieck identisches Papierdreieck an die Wandtafel. Ein Schüler hängt eines der blauen Dreiecke so auf das zweite braune, dass die Klasse sieht, wie der zweite Strahlensatz auf diese beiden Dreiecke angewendet werden kann. Die Lehrperson schreibt alle bekannten Grössen aus der Dachsparrenaufgabe in Zahlen, die unbekannten in Buchstaben auf die beiden Dreiecke. Mit diesen Angaben stellt die Klasse die Verhältnisgleichung auf und rechnet so die eine Kathete des braunen Dreiecks aus. Anschließend schreiben, zeichnen und kleben die Schülerinnen und Schüler den ganzen Lösungsweg von der Wandtafel ab. Dabei überlegen sie sich bereits den Lösungsweg zur Berechnung des anderen Dachsparrens. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B05-P-2105-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Bemerkungen erteilt die Lehrperson einen neuen Auftrag. Es handelt sich um eine Vorbereitungsaufgabe, die Voraussetzung für die problemorientierte Er...    mehr

    Nach einigen organisatorischen Bemerkungen erteilt die Lehrperson einen neuen Auftrag. Es handelt sich um eine Vorbereitungsaufgabe, die Voraussetzung für die problemorientierte Erarbeitung des neuen Inhalts, welchen die Lehrperson aber nicht verraten will, ist. Die Schülerinnen und Schüler erhalten farbige Papierstreifen, die sie in Dreiecke schneiden und dann nach einer bestimmten Vorlage ins Heft kleben müssen. Die Schülerinnen und Schüler sollen die rechtwinkligen Dreiecke so anordnen, dass zwei identische Quadrate entstehen, die jeweils vier der farbigen rechtwinkligen Dreiecke und eine weiße quadratische Fläche, beziehungsweise zwei weiße unterschiedlich große quadratische Flächen, enthalten. Sie arbeiten in Einzelarbeit. Nachdem die ersten Lernenden mit dem Auftrag fertig sind, erteilt die Lehrperson einen weiteren Auftrag. Die Lernenden sollen versuchen, Tatsachen zu den Quadraten herauszufinden. Anschließend an diese explorative Einzelarbeit bespricht die Lehrperson die gefundenen Behauptungen mit den Schülerinnen und Schülern. Gemeinsam finden sie heraus, dass die beiden kleinen weißen quadratischen Flächen gleich groß sein müssen wie die große weiße Fläche im anderen Quadrat. Anschließend an diese Erkenntnis erarbeitet die Lehrperson zusammen mit der Klasse einen Ergänzungsbeweis. Die Lehrperson notiert fortwährend an der Wandtafel. Zwei neue Begriffe „Kathete und Hypotenuse“ werden während der Beweisführung eingeführt. Bevor die Lernenden die Wandtafeldarstellung in ihr Heft übernehmen, um das Gelernte zu vertiefen, gibt die Lehrperson kurz einen geschichtlichen Hintergrund, wer die Formel a2+b2=c2 herausgefunden und wo diese Person gelebt hat. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B10-P-2110-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson das Thema der Stunde bekannt. Nach ersten historischen Bemerkungen zum Satz des Pythagoras entwickelt sie gemeinsam mit der Klasse anhand einer Zahlentripelaufgabe den Satz des Pythagoras. Die Schüler(innen) versuchen in Partnerarbeit mit drei Schnüren mit vorgegebener Länge ein rechtwinkliges Dreieck auszulegen und tragen ihre Ergebnisse an der Wandtafel ein. Angeleitete Stillarbeitsphasen und öffentliche Kontrollphasen bez. Erarbeitungsphasen wechseln sich ab. Anschließend erarbeitet die Lehrperson gemeinsam mit den Schüler(innen) an der Wandtafel einen Hefteintrag, in welchem der Satz grafisch dargestellt wir. Die Schüler(innen) übernehmen die Wandtafelanschrift in ihr Heft. Danach erfolgt eine kurze Repetition der Seitenbezeichnungen im rechtwinkligen Dreieck. Darauf hält die Lehrperson die erarbeitete Formel an der Wandtafel fest und formuliert den Merksatz in Worten aus, die Schüler(innen) schreiben mit. Bevor die Lehrperson die Schüler(innen) in die Pause entlässt, gibt sie einen Ausblick darauf, was sie nach der kurzen Pause im zweiten Teil der Doppelstunde machen werden. Die Lektion endet mit organisatorischen Hinweisen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B15-P-2115-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Besprechungen. Die Lehrperson gibt dann das Thema der Lektion bekannt, was sie dazu veranlasst, etwas über Pythagoras und seinen S...    mehr

    Die Lektion beginnt mit einigen organisatorischen Besprechungen. Die Lehrperson gibt dann das Thema der Lektion bekannt, was sie dazu veranlasst, etwas über Pythagoras und seinen Satz zu erzählen, und dass dieses Prinzip den Ägyptern schon lange vor Pythagoras bekannt war. Mit einer vorbereiteten Schnur zeigt die Lehrperson den Schülerinnen und Schülern, wie die Ägypter rechte Winkel bilden konnten. Wegen Unklarheiten seitens der Schülerinnen und Schüler versammelt sich die Klasse auf Geheiß der Lehrperson um einen Schülerpult, wo mit Hilfe mehrerer Hände das Dreieck noch einmal gebildet und der rechte Winkel als solcher bestimmt wird. An diesem Dreieck werden die Begriffe Katheten und Hypotenuse repetiert. Die Seitenlängen des entstandenen Dreiecks verhalten sich 3:4:5. Im Lehrgespräch bringt die Lehrperson den Schülerinnen und Schülern nahe, dass immer ein rechtwinkliges Dreieck entsteht, wenn die drei Seiten in diesem Verhältnis zueinander stehen. Danach schneiden sich die Schülerinnen und Schüler zu zweit ein beliebig langes Stück Schnur ab, das sie zusammenknüpfen, auf ihrem Pult zu einem rechtwinkligen Dreieck spannen, dessen Seiten messen und diese Längen an der Wandtafel in eine Tabelle eintragen. Schnellere Schülergruppen spannen und vermessen noch ein zweites rechtwinkliges Dreieck. Wie die Tabelle gefüllt ist, führt die Lehrperson den Begriff Zahlentripel ein und verteilt ein Blatt, auf dem die Schülerinnen und Schüler viele ganzzahlige pythagoräische Zahlentripel finden. An Hand dieser Liste und den Zahlentripeln an der Wandtafel sollen die Schülerinnen und Schüler nun selbständig in zweier Gruppen deren mathematischen Zusammenhang explorativ heraus finden und ihre Entdeckungen der Lehrperson kund tun. Da nach kurzer Zeit schon viele im Ansatz richtige Antworten bei der Lehrperson eingetroffen sind, lässt die Lehrperson die Schülerinnen und Schüler ihre Lösungsvorschläge an die Klasse weiter geben. Daraus entwickelt sich eine Diskussion darüber, dass bei den entdeckten Formeln die Operationszeichen nicht beliebig gesetzt werden können, sondern dass die Flächen der Seitenquadrate zum Berechnen der Hypotenuse plus, zum Berechnen einer Kathete minus gerechnet werden müssen. Wie sich Schülerinnen und Schüler unterstützt durch die Lehrperson gegenseitig von der korrekten Vorgehensweise überzeugt haben, gibt die Lehrperson die Hausaufgaben, die auch eine schriftliche Repetition dieser Lektion beinhalten, bekannt und schließt so die Lektion ab. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation