DE | EN
Logo fdz-Bildung
Search Research data Data of FDZ Bildung: searching

Data collections of FDZ Bildung

You can use individual terms to search the data collections at FDZ Bildung or use the filters to delimit the list of studies available from FDZ Bildung.

 
  • The following contents are searched in the data pool: title, topic, subject taught, abstract and keywords, unit of analysis, type and place of recorded units, title of study and survey.
  • Several search terms are automatically linked by "OR". You can link the words by "AND" if you tick the box "all words".
  • Blank spaces are used to separate search terms.
  • No distinction is made between small and capital letters.
  • Truncating: Search terms are not automatically truncated. You can use a * or % character for this purpose (math* will find mathematics).
  • Search by phrase: An exact combination of search terms can be used. Search terms must be inserted in quotation marks (e.g. "teamwork in lessons ").

reset

Request: "SCHULJAHR 08" (Filter: Schlagwörter)
BEWEIS (Filter: Schlagwörter)
SCHUELERMITWIRKUNG (Filter: Schlagwörter)

Number of results: 3
Refine your search:
     1     
  • Satzgruppe des Pythagoras (B12-P-2112-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse st...    more

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse statt. Neue Gedanken, Erkenntnisse und Lösungsversuche zu den einzelnen Aufträgen werden von einzelnen Schülerinnen und Schülern der Klasse mitgeteilt. Danach legen die Schülerinnen und Schüler ihre Arbeitsblätter an den dritten, von ihnen bisher unbearbeiteten Posten, den sie nach einer fünfminütigen Pause bearbeiten werden (im Video ist die Pause als Schnitt bei 00:14:47 erkennbar). Nach der Pause arbeiten die Schülerinnen und Schüler wiederum in Partnerarbeit selbständig entdeckend am dritten und letzten, von ihnen noch nicht bearbeiteten, Auftrag. Die Schülerinnen und Schüler formulieren danach in der Gruppe (zwei bis drei Partnerarbeitsgruppen zusammen) ihre Erkentnisse zur Aufgabe möglichst kurz und prägnant und bestimmen eine Schülerin/ einen Schüler, die/ der dies der ganzen Klasse am Hellraumprojektor vorträgt. Die Lehrperson gibt nun einen kurzen Überblick zum weiteren Stundenverlauf: Die Gruppen teilen ihre Überlegungen zu den drei Aufträgen vor der Klasse vor. Als erstes tragen zwei Schüler ihre Erkenntnisse zum Seiltrick der Ägypter vor und bestätigen dabei die Behauptung a2+b2=c2. Danach erzählt die Lehrperson kurz, wozu die Ägypter die Konstruktion des rechten Winkels benötigten. Darauf äußert sich ein Schüler am Hellraumprojektor zur Darstellung des Ergänzungsbeweises und rechnet vor, weshalb hier die Behauptung a2+b2=c2 stimmt. In der Folge werden die Erkenntnisse zum Parkett von zwei Schülerinnen geäußert. Sie bestätigen, dass das größte Quadrat gleich groß ist, wie die zwei kleineren zusammen. Zum Schluss der Doppellektion klärt die Lehrperson organisatorische Fragen bezüglich der nächsten Stunden und der Hausaufgaben. (Projekt)    less

  • Satzgruppe des Pythagoras (B13-P-2113-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn dieser Lektion wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs der Inhalt der letzten zwei Lektionen aufgefrischt. Danach werden die Hausaufgaben kontrollie...    more

    Zu Beginn dieser Lektion wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs der Inhalt der letzten zwei Lektionen aufgefrischt. Danach werden die Hausaufgaben kontrolliert. Dabei schreiben vier Schülerinnen und Schüler die Aufgaben 1a-1d (gegeben, gesucht, Formel, Ergebnisse) an die Wandtafel. In der Zwischenzeit kontrolliert die Lehrperson die Aufgabe zwei in den Heften der Schülerinnen und Schüler. Die Aufgabe eins wird von der ganzen Klasse gemeinsam angeschaut. Die Lehrperson macht mündliche und schriftliche Ergänzungen zu beiden Aufgaben. Bei den Hausaufgaben handelt es sich um Berechnungen von Seiten in rechtwinkligen Dreiecken. Darauf wird die Ausformulierung des Satzes von Pythagoras von einem Schüler wiederholt. Die Lehrperson leitet danach zum Ergänzungsbeweis über, dessen Erarbeitung die Klasse in der letzten Stunde bereits begonnen hatte. Anhand einer Darstellung des Ergänzungsbeweises am Hellraumprojektor zeigt die Lehrperson den bereits erarbeiteten Teil des Beweises noch einmal auf. Darauf wird mit einem fragend-entwickelnden Lehr- und Lerngespräch der Beweis in der Klasse weiter erarbeitet. Nach der Erarbeitung erhalten die Schülerinnen und Schüler ein Merkblatt des Beweises, das sie darauf in einer Stillarbeitsphase bemalen. Wer fertig ist, übernimmt eine Aufgabenstellung mit Zeichnung von der Wandtafel ins Theorieheft und versucht diese zu lösen. Es handelt sich dabei um die Berechnung der Basishöhe eines Dreiecks, das weder rechtwinklig, noch gleichschenklig ist. Indirekt handelt es sich dabei um den Höhensatz oder den Kathetensatz (= Satz des Euklid). Die Schülerinnen und Schüler werden von der Lehrperson aufgefordert, in Gruppen die Erkenntnisse an der Wandtafel zusammen zu tragen. Zwei Schüler lösen die Aufgabe schlussendlich vorne an der Wandtafel und schreiben dabei ihren Lösungsweg an. Sie werden von der Klasse unterstützt. Die Aufgabe wird nicht ganz zu Ende gelöst. Zum Schluss der Stunde gibt die Lehrperson die Hausaufgaben auf das nächste Mal auf und verteilt dazu ein Aufgabenblatt. (Projekt)    less

  • Satzgruppe des Pythagoras (B15-P-2115-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Wie zu Beginn der ersten Hälfte der Doppellektion angekündigt, arbeitet die Klasse in dieser Lektion an verschiedenen Beweisen. In einem ersten Teil betrachten die Schülerinnen und S...    more

    Wie zu Beginn der ersten Hälfte der Doppellektion angekündigt, arbeitet die Klasse in dieser Lektion an verschiedenen Beweisen. In einem ersten Teil betrachten die Schülerinnen und Schüler ein Muster auf einer Türe, das die Lehrperson an die Leinwand projiziert und auch im Schülerbuch zu finden ist. Sie sollen rechtwinklige Dreiecke und Quadrate suchen, die zur geometrischen Darstellung des Satzes von Pythagoras ja gebraucht werden. Anschließend zeichnen einige Schülerinnen und Schüler auf der Folie ein, was sie gefunden haben. Mit Hilfe der Lehrperson entsteht eine Pythagorasfigur um ein rechtwinklig-gleichseitiges Dreieck, bei der die Schülerinnen und Schüler dank des Musters erkennen können, dass die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat ist. In einem zweiten Teil versuchen einige Schülerinnen und Schüler am Hellraumprojektor den Zerlegungsbeweis des Perikles nachzuvollziehen. Einer nach der andern versucht die von der Lehrperson vorbereiteten Teile in Position zu schieben, was aber niemandem so richtig gelingen will. Der Rest der Klasse schaut dabei zu. Die Lehrperson bricht diese Beweisphase schließlich ab und teilt ein Blatt aus, auf dem acht identische rechtwinklige Dreiecke und den Dreiecksseiten entsprechend drei Quadrate abgebildet sind. Die Schülerinnen und Schüler schneiden die elf Teile aus und legen damit zwei gleich große Quadrate. Kurz vor dem Ende der Lektion zeigt eine Schülerin die richtige Lösung am Hellraumprojektor und ein Schüler zeigt an den entstandenen Quadraten dem Rest der Klasse den Zerlegungsbeweis vor. Als Hausaufgabe soll dieser Beweis im Heft festgehalten werden. (Projekt)    less


     1     
Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education