DE | EN
Logo fdz-Bildung
Search Research data Data of FDZ Bildung: searching

Data collections of FDZ Bildung

You can use individual terms to search the data collections at FDZ Bildung or use the filters to delimit the list of studies available from FDZ Bildung.

 
  • The following contents are searched in the data pool: title, topic, subject taught, abstract and keywords, unit of analysis, type and place of recorded units, title of study and survey.
  • Several search terms are automatically linked by "OR". You can link the words by "AND" if you tick the box "all words".
  • Blank spaces are used to separate search terms.
  • No distinction is made between small and capital letters.
  • Truncating: Search terms are not automatically truncated. You can use a * or % character for this purpose (math* will find mathematics).
  • Search by phrase: An exact combination of search terms can be used. Search terms must be inserted in quotation marks (e.g. "teamwork in lessons ").

reset

Request: "SCHUELERARBEIT (EINZELARBEIT)" (Filter: Social arrangement)
MATHEMATIK (Filter: Unterrichtsfach)
VORBEREITUNG (Filter: Schlagwörter)

Number of results: 13
  • Satzgruppe des Pythagoras (B19-P-2204-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran...    more

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran: Wie hoch und/ oder breit darf ein am Boden zusammengebauter IKEA-Schrank sein, damit er in einem 223 cm hohen Zimmer aufgestellt werden kann. In Zweiergruppen überlegen sich die Schülerinnen und Schüler mit welchen der vorgegebenen Schränke das möglich ist. Nach einigen Minuten sammelt die Lehrperson die Meinungen der Schülerinnen und Schüler und hält sie auf einer Planskizze fest. Die Meinungen gehen weit auseinander. Nun haben die Schülerinnen und Schüler zwei Möglichkeiten wie sie weiterarbeiten wollen: Die einen schneiden die Planteile der Schränke aus, die andern suchen nach einer allgemeingültigen Formel und versuchen so explorativ herauszufinden, welcher der verschiedenen Schränke denn nun aufgestellt werden kann und welcher nicht und woran es liegen könnte, dass ein Schrank aufgestellt werden kann oder nicht. Im Plenum äußern sich die Schüler über ihre Erkenntnisse: Entscheidend ist die Diagonale. Die Lehrperson abstrahiert das Problem auf ein rechtwinkliges Dreieck, von dem man die Hypotenuse nicht kennt. Ein Schüler kennt den Satz des Pythagoras und nennt ihn als Lösungsvorschlag. Die Lehrperson stellt den Satz an der Wandtafel geometrisch dar und der Schüler rechnet vor, wie die Diagonale eines Schrankes mit dem Satz zu bestimmen ist. Danach fordert die Lehrperson die Schülerinnen und Schüler auf, die Diagonalen der anderen Schränke zu berechnen und so endlich zu bestimmen, welcher nun aufgestellt werden könne. Da sich nun alle einig sind, welcher Schrank in das Zimmer passt, übernehmen die Schülerinnen und Schüler die geometrischen Ausführungen in ihr Theorieheft. Dazu soll jeder für sich den Satz des Pythagoras in eigenen Worten formulieren. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    more

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Als erstes beschriften die Schülerinnen und Schüler ein rechtwinkliges Dreieck, damit "alle vom gleichen sprechen". Danach schneiden sie vier identische rechtwinklige Dreiecke ABC...    more

    Als erstes beschriften die Schülerinnen und Schüler ein rechtwinkliges Dreieck, damit "alle vom gleichen sprechen". Danach schneiden sie vier identische rechtwinklige Dreiecke ABC aus, die sie auf unterschiedliche Arten im Quadrat mit der Seitenlänge a + b anordnen. Es entstehen verschiedenste Möglichkeiten. Die Lehrperson lässt dann die zwei Möglichkeiten, die für den Ergänzungsbeweis benötigt werden, an der Wandtafel skizzieren. Dank diesen Skizzen kann ein Schüler der Klasse den Beweis mündlich erklären. Anschließend sollen die Schülerinnen und Schüler den Beweis mit algebraischen Mitteln analog zu den Skizzen selbständig führen. Da dies den meisten Mühe bereitet, beendigt die Lehrperson den Beweis an der Wandtafel. Vor dem Ende der Lektion überprüfen die Schülerinnen und Schüler den Satz des Pythagoras an einem selber konstruierten rechtwinkligen Dreieck. (Projekt)    less


Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education