DE | EN
Logo fdz-Bildung
Search Research data Data of FDZ Bildung: searching

Data collections of FDZ Bildung

You can use individual terms to search the data collections at FDZ Bildung or use the filters to delimit the list of studies available from FDZ Bildung.

 
  • The following contents are searched in the data pool: title, topic, subject taught, abstract and keywords, unit of analysis, type and place of recorded units, title of study and survey.
  • Several search terms are automatically linked by "OR". You can link the words by "AND" if you tick the box "all words".
  • Blank spaces are used to separate search terms.
  • No distinction is made between small and capital letters.
  • Truncating: Search terms are not automatically truncated. You can use a * or % character for this purpose (math* will find mathematics).
  • Search by phrase: An exact combination of search terms can be used. Search terms must be inserted in quotation marks (e.g. "teamwork in lessons ").

reset

Request: "SCHUELERARBEIT (EINZELARBEIT)" (Filter: Social arrangement)
MATHEMATIK (Filter: Unterrichtsfach)
ERGEBNISKONTROLLE (Filter: Schlagwörter)
EXPLORATION (Filter: Schlagwörter)

Number of results: 12
  • Satzgruppe des Pythagoras (B17-P-2202-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lehrperson gibt zu Beginn dieser Stunde die Anweisung jeweils beide Teilflächen des Ergänzungsbeweises als Formel aufzuschreiben (a2, b2 und vier rechtwinklige, kongruente Dreieck...    more

    Die Lehrperson gibt zu Beginn dieser Stunde die Anweisung jeweils beide Teilflächen des Ergänzungsbeweises als Formel aufzuschreiben (a2, b2 und vier rechtwinklige, kongruente Dreiecke /c2 und vier rechtwinklige, kongruente Dreiecke). Die Schülerinnen und Schüler arbeiten alleine, selbständig entdeckend. In der Klasse werden danach die Ergebnisse zusammengetragen und der Lösungsweg nachvollzogen. Darauf werden die Formeln gleichgesetzt und gekürzt, so dass a2 + b2 = c2 übrig bleibt. Die Lehrperson sagt der Klasse, dass dies für alle rechtwinkligen Dreiecke gilt. Darauf nehmen die Schülerinnen und Schüler ihr Aufgabenbuch hervor und die Lehrperson erklärt der Klasse, was die Ausdrücke Hypotenuse und Katheten bedeuten, um die folgenden Aufgaben zu lösen und gibt der Klasse noch einige Hinweise, um in Einzelarbeit elf Aufgaben zu berechnen. Darauf arbeiten die Schülerinnen und Schüler alleine. Die Aufgaben sind den bereits gelösten ähnlich. Es geht dabei um die Berechnung der Hypotenuse und der Bestätigung der Formel in rechtwinkligen Dreiecken. Wer die Aufgaben fertig gelöst hat, bekommt den Auftrag eine Aufgabe, die vorne an der Wandtafel steht, zu lösen. Es geht dabei um die Berechnung einer Kathete. Der Lösungsweg steht dabei im Vordergrund. Darauf unterbricht die Lehrperson die Schülerarbeit und gemeinsam bespricht die Klasse den Lösungsweg und die Lehrperson schreibt diesen für die Aufgabe (Kathetenberechnung) an die Wandtafel. Dabei wird die Formel aufgestellt, gleichgesetzt, aufgelöst und das Ergebnis gemeinsam in der Klasse berechnet. Danach gibt die Lehrperson weitere vier Aufgaben auf, die in Einzelarbeit berechnet werden. Bei diesen Aufgaben geht es, wie vorher im Unterricht besprochen, um die Berechnung der Katheten. Die Aufgabenstellung ist bekannt und kann deshalb als repetitiv bezeichnet werden. Zum Schluss der Stunde gibt die Lehrperson die Hausaufgaben auf. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    more

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    less


Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education