DE | EN
Logo fdz-Bildung
Search Research data Data of FDZ Bildung: searching

Data collections of FDZ Bildung

You can use individual terms to search the data collections at FDZ Bildung or use the filters to delimit the list of studies available from FDZ Bildung.

 
  • The following contents are searched in the data pool: title, topic, subject taught, abstract and keywords, unit of analysis, type and place of recorded units, title of study and survey.
  • Several search terms are automatically linked by "OR". You can link the words by "AND" if you tick the box "all words".
  • Blank spaces are used to separate search terms.
  • No distinction is made between small and capital letters.
  • Truncating: Search terms are not automatically truncated. You can use a * or % character for this purpose (math* will find mathematics).
  • Search by phrase: An exact combination of search terms can be used. Search terms must be inserted in quotation marks (e.g. "teamwork in lessons ").

reset

Request: SCHUELERMITWIRKUNG (Filter: Schlagwörter)
GEOMETRIE (Filter: Thema)

Number of results: 20
Refine your search:
  • Satzgruppe des Pythagoras (A19-P-1223-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn der Stunde legt die Lehrperson eine Folie auf, auf der einige Behauptungen zu den Kathetensätzen aufgeschrieben sind. Die Schülerinnen und Schüler bewerten nun in der Klass...    more

    Zu Beginn der Stunde legt die Lehrperson eine Folie auf, auf der einige Behauptungen zu den Kathetensätzen aufgeschrieben sind. Die Schülerinnen und Schüler bewerten nun in der Klasse, ob die Aussagen richtig oder falsch sind. Anschließend legt die Lehrperson eine sauber konstruierte Pythagorasfigur auf den Hellraumprojektor, auf der die Kathetensätze graphisch erkennbar sind. An Hand dieser Darstellung werden die Formeln der Kathetensätze ins Gedächtnis gerufen. Dann formulieren die Schülerinnen und Schüler im Plenum die Kathetensätze für unüblich beschriftete rechtwinklige Dreiecke. Die Lehrperson behauptet, dass im rechtwinkligen Dreieck gelte, dass die Summe der Flächen der Kathetenquadrate gleich der Fläche des Hypotenusenquadrates ist. Dies sollen die Schülerinnen und Schüler an Hand ihres Vorwissens nun selbständig beweisen. Nachdem die Schülerinnen und Schüler etwa zehn Minuten Zeit hatten, zu zweit diesen Beweis zu führen, geben sie ihre Erkenntnisse in der Klasse bekannt. Einige Schülerinnen und Schüler haben Zahlenbeispiele berechnet, eine Schülerin zeigt an der Wandtafel eine allgemeine Umformug der Kathetensätze in den Satz des Pythagoras. Da die Ausführungen bei der Klasse und der Lehrperson auf Unverständnis stoßen, führt ein Schüler die von der Schülerin angefangene Umformung zu Ende. Aus dem Buch liest eine Schülerin etwas über die Person Pythagoras vor. Anschließend wird der Satz des Pythagoras in der Klasse in Worten formuliert. Vor dem Ende der Lektion wird die Hypotenuse eines rechtwinkligen Dreiecks, dessen Katheten bekannt sind, in der Klasse berechnet. (Projekt)    less

  • Satzgruppe des Pythagoras (A20-P-1225-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbr...    more

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbrink einen Landtausch an. Zwei kleine quadratische Felder sollen in ein angrenzendes großes quadratisches Feld umgetauscht werden. Der Bauer weiß nicht recht, ob er dem Handel zustimmen soll, doch seine Nichte berechnet die Flächen der Felder und rät ihrem Onkel auf den Tausch einzusteigen. Von dem Handel erzählt Bauer Piepenbrink am Stammtisch. Seine zwei Kollegen, Bauer Plattfuß und Bauer Großmaul, wollen daraufhin auch zwei kleine quadratische Felder in ein großes quadratisches Feld umtauschen. Die Lehrperson teilt die Pläne, wie die Felder der Bauern liegen an die Schüler aus. Jede Gruppe bearbeitet eine Felderkombination. Sie sollen herausfinden, ob sich der Tausch für "ihren" Bauern lohnt. Bei Bauer Piebenbrink bilden die Felderquadrate, die an den Ecken zusammenstossen in der Mitte einen Leerraum in Form eines rechtwinkligen Dreiecks, bei Bauer Plattfuß ein stumpfwinkliges, bei Bauer Großmaul ein spitzwinkliges Dreieck. Die Schülergruppen präsentieren ihre Erkenntnisse. Sie haben festgestellt, dass bei Bauer Piepenbrink die Flächen der kleinen Quadrate zusammen die Fläche des großen Quadrates ergibt, bei Bauer Plattfuss das große Quadrat größer und bei Bauer Großmaul kleiner, als die Flächen der beiden kleinen Quadrate zusammen. Ein Schüler, der Bauer Piepenbrinks Felder bearbeitet hat, vermutet, dass die Flächengleichheit mit dem rechtwinkligen Dreieck zwischen den Feldern zu tun hat. So kommt die ganze Klasse auf die Dreiecke zwischen den Feldern zu sprechen, und stellt fest, dass bei den Quadraten, die um das rechtwinklige Dreieck angeordnet sind, die Flächen der beiden kleineren zusammen die Fläche des größeren ergeben. Da nun scheinbar oft von rechtwinkligen Dreiecken gesprochen wird, führt die Lehrperson die Bezeichnungen im rechtwinkligen Dreieck ein. Mit den neu erlernten Begriffen versuchen die Schülerinnen und Schüler im Plenum ihre Erkenntnisse bezüglich der Quadrate über den Dreiecksseiten in einem Satz zu formulieren. Schließlich wird eine befriedigende Formulierung gefunden. Diese schreiben die Schülerinnen und Schüler in ihre Theorieblätter. Anschließend überprüfen sie den behaupteten Satz selbständig an einigen Übungsaufgaben aus dem Buch. (Projekt)    less

  • Satzgruppe des Pythagoras (B11-P-2111-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Informationen. Anschliessend werden zwei Übungsaufgaben in der Klasse gelöst. Die erste ist noch eine einschrittige Seitenberechnun...    more

    Die Lektion beginnt mit einigen organisatorischen Informationen. Anschliessend werden zwei Übungsaufgaben in der Klasse gelöst. Die erste ist noch eine einschrittige Seitenberechnung, bei der zweiten soll in einem gleichschenkligen Dreieck die Basishöhe bei gegebener Schenkel- und Basislänge berechnet werden. Dann liest die Lehrperson aus dem Leben von Pythagoras vor. Anschliessend rechnen die Schülerinnen und Schüler an den nun teilweise komplexeren Übungsaufgaben weiter. In der letzten Viertelstunde wird eine Lernkontrolle ausgefüllt und korrigiert. (Projekt)     less

  • Satzgruppe des Pythagoras (B12-P-2112-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse st...    more

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse statt. Neue Gedanken, Erkenntnisse und Lösungsversuche zu den einzelnen Aufträgen werden von einzelnen Schülerinnen und Schülern der Klasse mitgeteilt. Danach legen die Schülerinnen und Schüler ihre Arbeitsblätter an den dritten, von ihnen bisher unbearbeiteten Posten, den sie nach einer fünfminütigen Pause bearbeiten werden (im Video ist die Pause als Schnitt bei 00:14:47 erkennbar). Nach der Pause arbeiten die Schülerinnen und Schüler wiederum in Partnerarbeit selbständig entdeckend am dritten und letzten, von ihnen noch nicht bearbeiteten, Auftrag. Die Schülerinnen und Schüler formulieren danach in der Gruppe (zwei bis drei Partnerarbeitsgruppen zusammen) ihre Erkentnisse zur Aufgabe möglichst kurz und prägnant und bestimmen eine Schülerin/ einen Schüler, die/ der dies der ganzen Klasse am Hellraumprojektor vorträgt. Die Lehrperson gibt nun einen kurzen Überblick zum weiteren Stundenverlauf: Die Gruppen teilen ihre Überlegungen zu den drei Aufträgen vor der Klasse vor. Als erstes tragen zwei Schüler ihre Erkenntnisse zum Seiltrick der Ägypter vor und bestätigen dabei die Behauptung a2+b2=c2. Danach erzählt die Lehrperson kurz, wozu die Ägypter die Konstruktion des rechten Winkels benötigten. Darauf äußert sich ein Schüler am Hellraumprojektor zur Darstellung des Ergänzungsbeweises und rechnet vor, weshalb hier die Behauptung a2+b2=c2 stimmt. In der Folge werden die Erkenntnisse zum Parkett von zwei Schülerinnen geäußert. Sie bestätigen, dass das größte Quadrat gleich groß ist, wie die zwei kleineren zusammen. Zum Schluss der Doppellektion klärt die Lehrperson organisatorische Fragen bezüglich der nächsten Stunden und der Hausaufgaben. (Projekt)    less

  • Satzgruppe des Pythagoras (B13-P-2113-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nenne...    more

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nennen die Schülerinnen und Schüler den Kreis, die Mittelsenkrechte, die Mittelparalelle, den Thaleskreis und die Winkelhalbierende als geometrische Orte. Darauf erteilt die Lehrperson den Schülerinnen und Schülern einen Auftrag, bei dem sie ein rechtwinkliges Dreieck zeichnen sollen, indem sie den Thaleskreis über der Seite c konstruieren. Danach sollen sie die Seiten a, b und über den drei Seiten die entsprechenden Flächenquadrate zeichnen. Da der Auftrag auf Häuschenpapier gezeichnet wird, sollen die Schülerinnen und Schüler danach die Häuschen der einzelnen Flächenquadrate zählen und miteinander vergleichen. Schlussfolgerungen sollen dabei an der Tafel notiert werden. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, werden in einem entwickelnden Lehr- und Lerngespräch die Seitenbezeichnungen (Hypotenuse und Katheten) in einem rechtwinkligen Dreieck erarbeitet. Danach arbeiten die Schülerinnen und Schüler zu zweit an dem zuvor erteilten Auftrag. Bei der Auswertung erklärt ein Schüler am Hellraumprojektor, wie er die Flächen berechnet hat. Eine Schülerin präsentiert die Schlussfolgerung, dass die Summe der Flächenquadrate über den Katheten gleich groß ist, wie das Flächenquadrat über der Hypotenuse. Während der Stillarbeitsphase wurden von den Schülerinnen und Schülern die Formel a2 + b2 = c2 und deren Ableitungen an der Wandtafel notiert. Nun überprüft die Klasse die Formel a2 + b2 = c2 mit dem Taschenrechner und befindet sie als richtig. Mit der Unterstützung der Lehrperson und der Gleichungslehre, werden auch die Umkehrungen der Formel als richtig anerkannt. Zum Schluss der Lektion gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    less

  • Satzgruppe des Pythagoras (B13-P-2113-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Zu Beginn dieser Lektion wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs der Inhalt der letzten zwei Lektionen aufgefrischt. Danach werden die Hausaufgaben kontrollie...    more

    Zu Beginn dieser Lektion wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs der Inhalt der letzten zwei Lektionen aufgefrischt. Danach werden die Hausaufgaben kontrolliert. Dabei schreiben vier Schülerinnen und Schüler die Aufgaben 1a-1d (gegeben, gesucht, Formel, Ergebnisse) an die Wandtafel. In der Zwischenzeit kontrolliert die Lehrperson die Aufgabe zwei in den Heften der Schülerinnen und Schüler. Die Aufgabe eins wird von der ganzen Klasse gemeinsam angeschaut. Die Lehrperson macht mündliche und schriftliche Ergänzungen zu beiden Aufgaben. Bei den Hausaufgaben handelt es sich um Berechnungen von Seiten in rechtwinkligen Dreiecken. Darauf wird die Ausformulierung des Satzes von Pythagoras von einem Schüler wiederholt. Die Lehrperson leitet danach zum Ergänzungsbeweis über, dessen Erarbeitung die Klasse in der letzten Stunde bereits begonnen hatte. Anhand einer Darstellung des Ergänzungsbeweises am Hellraumprojektor zeigt die Lehrperson den bereits erarbeiteten Teil des Beweises noch einmal auf. Darauf wird mit einem fragend-entwickelnden Lehr- und Lerngespräch der Beweis in der Klasse weiter erarbeitet. Nach der Erarbeitung erhalten die Schülerinnen und Schüler ein Merkblatt des Beweises, das sie darauf in einer Stillarbeitsphase bemalen. Wer fertig ist, übernimmt eine Aufgabenstellung mit Zeichnung von der Wandtafel ins Theorieheft und versucht diese zu lösen. Es handelt sich dabei um die Berechnung der Basishöhe eines Dreiecks, das weder rechtwinklig, noch gleichschenklig ist. Indirekt handelt es sich dabei um den Höhensatz oder den Kathetensatz (= Satz des Euklid). Die Schülerinnen und Schüler werden von der Lehrperson aufgefordert, in Gruppen die Erkenntnisse an der Wandtafel zusammen zu tragen. Zwei Schüler lösen die Aufgabe schlussendlich vorne an der Wandtafel und schreiben dabei ihren Lösungsweg an. Sie werden von der Klasse unterstützt. Die Aufgabe wird nicht ganz zu Ende gelöst. Zum Schluss der Stunde gibt die Lehrperson die Hausaufgaben auf das nächste Mal auf und verteilt dazu ein Aufgabenblatt. (Projekt)    less

  • Satzgruppe des Pythagoras (B15-P-2115-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Wie zu Beginn der ersten Hälfte der Doppellektion angekündigt, arbeitet die Klasse in dieser Lektion an verschiedenen Beweisen. In einem ersten Teil betrachten die Schülerinnen und S...    more

    Wie zu Beginn der ersten Hälfte der Doppellektion angekündigt, arbeitet die Klasse in dieser Lektion an verschiedenen Beweisen. In einem ersten Teil betrachten die Schülerinnen und Schüler ein Muster auf einer Türe, das die Lehrperson an die Leinwand projiziert und auch im Schülerbuch zu finden ist. Sie sollen rechtwinklige Dreiecke und Quadrate suchen, die zur geometrischen Darstellung des Satzes von Pythagoras ja gebraucht werden. Anschließend zeichnen einige Schülerinnen und Schüler auf der Folie ein, was sie gefunden haben. Mit Hilfe der Lehrperson entsteht eine Pythagorasfigur um ein rechtwinklig-gleichseitiges Dreieck, bei der die Schülerinnen und Schüler dank des Musters erkennen können, dass die Summe der Kathetenquadrate gleich dem Hypotenusenquadrat ist. In einem zweiten Teil versuchen einige Schülerinnen und Schüler am Hellraumprojektor den Zerlegungsbeweis des Perikles nachzuvollziehen. Einer nach der andern versucht die von der Lehrperson vorbereiteten Teile in Position zu schieben, was aber niemandem so richtig gelingen will. Der Rest der Klasse schaut dabei zu. Die Lehrperson bricht diese Beweisphase schließlich ab und teilt ein Blatt aus, auf dem acht identische rechtwinklige Dreiecke und den Dreiecksseiten entsprechend drei Quadrate abgebildet sind. Die Schülerinnen und Schüler schneiden die elf Teile aus und legen damit zwei gleich große Quadrate. Kurz vor dem Ende der Lektion zeigt eine Schülerin die richtige Lösung am Hellraumprojektor und ein Schüler zeigt an den entstandenen Quadraten dem Rest der Klasse den Zerlegungsbeweis vor. Als Hausaufgabe soll dieser Beweis im Heft festgehalten werden. (Projekt)    less

  • Satzgruppe des Pythagoras (B19-P-2204-Lek2)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach der Pause sammelt die Lehrperson die Formulierungen der Schülerinnen und Schüler. Schließlich diktiert er die Standartformulierung, welche die Schülerinnen und Schüler in ihr H...    more

    Nach der Pause sammelt die Lehrperson die Formulierungen der Schülerinnen und Schüler. Schließlich diktiert er die Standartformulierung, welche die Schülerinnen und Schüler in ihr Heft übernehmen. Im Plenum wird die Diagonale eines Rechtecks berechnet. Danach berechnen die Schülerinnen und Schüler selbständig die maximale Breite von zwei Schränken, die bei gegebener Höhe wie bei der Hinführungsaufgabe der letzten Lektion in demselben Zimmer aufgestellt werden sollen. Anschließend erklärt eine Schülerin ihren Lösungsweg zur ersten Aufgabe an der Wandtafel. Für die Berechnung des zweiten Schrankes bekommen die Schülerinnen und Schüler noch etwas Zeit, bevor dann ein Schüler den Lösungsweg zu dieser Aufgabe demonstriert. Schließlich gibt die Lehrperson als Hausaufgabe die Berechnung von einigen Dreiecksseiten und Dreiecksflächen, an diesen können die Schülerinnen und Schüler bis zum Ende der Lektion arbeiten. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    more

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    less

  • Unterrichtsaufzeichnung (RP14399_3_4-3)

    part of: VERA - Gute Unterrichtspraxis / Classroom observation (data): VERA

    In dieser Mathematikeinzelstunde steht das Überprüfen der Größe der Flächeninhalte verschiedener Formen bzw. Figuren mit dem Geobrett (Nagelbrett) im Vordergrund. Zunächst kommt die Klas...    more

    In dieser Mathematikeinzelstunde steht das Überprüfen der Größe der Flächeninhalte verschiedener Formen bzw. Figuren mit dem Geobrett (Nagelbrett) im Vordergrund. Zunächst kommt die Klasse im Sitzkreis zusammen und es werden Schülerbeiträge zu den unterschiedlichen geometrischen Figuren aus Papier, welche die Lehrkraft auf den Boden verteilt, gesammelt. Diese werden nach der Größe sortiert und die Reihenfolge an der Tafel festgehalten. Die Schüler sollen nun beweisen, ob diese Reihenfolge stimmt und hierfür wahlweise alleine, zu zweit oder zu dritt arbeiten. Die Lehrerin gibt noch Hinweise zum Verlauf der Stunde: Nach der Überprüfung, für die auch ausliegende Tipp-Kärtchen verwendet werden dürfen, sollen die Schüler sich von den bekannten Stellen im Klassenraum zusätzliche Arbeitsblätter holen und am Ende der Stunde präsentieren, wie sie auf ihr Ergebnis gekommen sind. Nach der zwanzigminütigen Schülerarbeitsphase kommen die Schüler wieder im Sitzkreis zusammen und besprechen im Klassenverbund wie sie vorgegangen sind und präsentieren ihre Lösungswege und Begründungen. Die letzten zehn Minuten werden zum Aufräumen und für die Freiarbeit verwendet. (DIPF/ah)    less


Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education