DE | EN
Logo fdz-Bildung
Search Research data Data of FDZ Bildung: searching

Data collections of FDZ Bildung

You can use individual terms to search the data collections at FDZ Bildung or use the filters to delimit the list of studies available from FDZ Bildung.

 
  • The following contents are searched in the data pool: title, topic, subject taught, abstract and keywords, unit of analysis, type and place of recorded units, title of study and survey.
  • Several search terms are automatically linked by "OR". You can link the words by "AND" if you tick the box "all words".
  • Blank spaces are used to separate search terms.
  • No distinction is made between small and capital letters.
  • Truncating: Search terms are not automatically truncated. You can use a * or % character for this purpose (math* will find mathematics).
  • Search by phrase: An exact combination of search terms can be used. Search terms must be inserted in quotation marks (e.g. "teamwork in lessons ").

reset

Request: MATHEMATIKUNTERRICHT (Filter: Schlagwörter)
HERLEITUNG (Filter: Schlagwörter)

Number of results: 64
  • Satzgruppe des Pythagoras (B19-P-2204-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran...    more

    Die Lektion beginnt mit einigen organisatorischen Informationen. Danach führt die Lehrperson die Schüler mit einer Aufgabe aus dem alltäglichen Leben an den Satz des Pythagoras heran: Wie hoch und/ oder breit darf ein am Boden zusammengebauter IKEA-Schrank sein, damit er in einem 223 cm hohen Zimmer aufgestellt werden kann. In Zweiergruppen überlegen sich die Schülerinnen und Schüler mit welchen der vorgegebenen Schränke das möglich ist. Nach einigen Minuten sammelt die Lehrperson die Meinungen der Schülerinnen und Schüler und hält sie auf einer Planskizze fest. Die Meinungen gehen weit auseinander. Nun haben die Schülerinnen und Schüler zwei Möglichkeiten wie sie weiterarbeiten wollen: Die einen schneiden die Planteile der Schränke aus, die andern suchen nach einer allgemeingültigen Formel und versuchen so explorativ herauszufinden, welcher der verschiedenen Schränke denn nun aufgestellt werden kann und welcher nicht und woran es liegen könnte, dass ein Schrank aufgestellt werden kann oder nicht. Im Plenum äußern sich die Schüler über ihre Erkenntnisse: Entscheidend ist die Diagonale. Die Lehrperson abstrahiert das Problem auf ein rechtwinkliges Dreieck, von dem man die Hypotenuse nicht kennt. Ein Schüler kennt den Satz des Pythagoras und nennt ihn als Lösungsvorschlag. Die Lehrperson stellt den Satz an der Wandtafel geometrisch dar und der Schüler rechnet vor, wie die Diagonale eines Schrankes mit dem Satz zu bestimmen ist. Danach fordert die Lehrperson die Schülerinnen und Schüler auf, die Diagonalen der anderen Schränke zu berechnen und so endlich zu bestimmen, welcher nun aufgestellt werden könne. Da sich nun alle einig sind, welcher Schrank in das Zimmer passt, übernehmen die Schülerinnen und Schüler die geometrischen Ausführungen in ihr Theorieheft. Dazu soll jeder für sich den Satz des Pythagoras in eigenen Worten formulieren. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    more

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek3)

    part of: Pythagoras - Videogestützte Unterrichtsstudie / Classroom observation (data): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben. Ein Arbeitsplan, auf dem der ungefähre Inhalt der nächsten zwei Lektionen beschrieben ist, wird verteilt. Gemäß dieses Arbeitsp...    more

    Die Lektion beginnt mit einigen organisatorischen Angaben. Ein Arbeitsplan, auf dem der ungefähre Inhalt der nächsten zwei Lektionen beschrieben ist, wird verteilt. Gemäß dieses Arbeitsplans repetieren die Schülerinnen und Schüler die Aussage des Satzes von Pythagoras. Dazu skizziert die Lehrperson die Pythagorasfigur an die Wandtafel. Zusammen mit dem Satz übernehmen sie die Schülerinnen und Schüler auf ein Theorieblatt. An Hand der skizzierten Pythagorasfigur kommt die Lehrperson auf das pythagoräische Zahlentripel zu sprechen. Wie auf dem Arbeitsplan vorgegeben beginnt die Klasse nun mit Übungsaufgaben. Zuerst werden zwei einschrittige Aufgaben im Plenum gelöst, weitere zwei Aufgaben lösen die Schülerinnen und Schüler selbständig. Einzelne Schüler lösen die Aufgaben an der Wandtafel. An Hand dieser Ausführungen werden die selbständig gelösten Aufgaben besprochen. Danach führt die Lehrperson mit einer weiteren Übungsaufgabe die Umkehrungen des Satzes von Pythagoras ein, anschließend werden bis zum Ende der Lektion weitere einschrittige Übungsaufgaben gelöst. (Projekt)    less

  • Unterrichtsaufzeichnung (S352_obs080)

    part of: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Classroom observation (data): TVD

    Thema der Doppelstunde ist das Herleiten von Gleichungen zur Lösung von Zahlenrätseln. Nach der Begrüßung bespricht die Klasse die Hausaufgaben. Vier Schüler schreiben jeweils die Lös...    more

    Thema der Doppelstunde ist das Herleiten von Gleichungen zur Lösung von Zahlenrätseln. Nach der Begrüßung bespricht die Klasse die Hausaufgaben. Vier Schüler schreiben jeweils die Lösung einer Aufgabe an die Tafel. Währenddessen geht die Lehrkraft herum und überprüft die Hausaufgaben der Anderen. Im Plenum besprechen sie gemeinsam die einzelnen Aufgaben. Im zweiten Drittel der Stunde bearbeitet die Klasse ein Zahlenrätsel in Form einer Textaufgabe. Die Lehrkraft schreibt das Rätsel zunächst an die Tafel. Die Schüler und Schülerinnen sammeln Vorschläge zur Lösungsstrategie. Anhand der Informationen aus dem Text stellen sie einen Term auf und leiten eine Gleichung her. In Einzelarbeit lösen sie die Gleichung mittels Umformung und der p/q Formel. Die Lehrkraft geht herum und gibt Hilfestellung. Im Anschluss daran halten sie an der Tafel die p/q Formel fest und besprechen die Lösung der Gleichung. Danach teilt die Lehrkraft ein Arbeitsblatt aus. In Einzelarbeit formen die Schüler und Schülerinnen Terme aus Textaufgaben und übersetzen Terme in Textform. Die Ergebnisse besprechen sie im Plenum. Für die nächsten Aufgaben lösen die Schüler und Schülerinnen wieder Zahlenrätsel. Hierzu hält die Lehrkraft an der Tafel nochmal die Vorgehensweise fest. Während dieser Stillarbeitsphase schreibt die Lehrkraft die Lösungen verdeckt an die Tafel und geht anschließend herum und gibt Hilfestellungen. Die Schüler können ihre Lösungen mit denen an der Tafel vergleichen. Diese Einzelarbeitsphase wird von einer kurzen Pause unterbrochen und in der zweiten Stunde fortgeführt. Nach der Bearbeitungszeit kontrollieren alle Schüler und Schülerinnen ihre Ergebnisse mit den Lösungen an der Tafel. Im zweiten Drittel dieser Stunde bearbeiten sie die letzte Aufgabe des Arbeitsblatts. Zunächst liest ein Schüler die Aufgabe vor. Gemeinsam lösen die Schülerinnen und Schüler den ersten Teil der Aufgabe an der Tafel und übertragen den Tafelanschrieb in ihre Hefte. Danach stellen sie die Gleichung für den zweiten Teil der Aufgabe auf. Sie lösen diese Gleichung in Einzelarbeit und besprechen das Ergebnis anschließend. In den letzten Minuten nennt die Lehrkraft Aufgaben im Mathebuch, die die Schüler und Schülerinnen als Hausaufgabe bearbeiten. Vor Unterrichtsende besprechen sie noch das Vorgehen zur Lösung der Aufgaben. (DIPF/kw)    less


Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education