DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: ERGEBNISSICHERUNG (Filter: Schlagwörter)
Anzahl der Treffer: 42
Filtern nach:
  • Direkte und indirekte Rede (v_hu_08)

    Bestandteil von: Audiovisuelle Aufzeichnungen von Schulunterricht in der DDR / Unterrichtsbeobachtung (Daten): Quellensicherung und Zugänglichmachung von Videoaufzeichnungen von DDR-Unterricht der HU Berlin

    Bei der Aufzeichnung handelt es sich um ein Unterrichtsfragment, in dem es um die Festigung der Verwendung von Satzzeichen und die Konjugation von Verben in der direkten Rede geht....    mehr

    Bei der Aufzeichnung handelt es sich um ein Unterrichtsfragment, in dem es um die Festigung der Verwendung von Satzzeichen und die Konjugation von Verben in der direkten Rede geht. Vor Unterrichtsbeginn erläutert eine Stimme aus dem Off anhand eines Schaubildes die unterschiedlichen Unterrichtsphasen. Im Anschluss folgt die Präsentation der im Unterricht verwendeten Arbeitsblätter, deren Inhalt und Herstellung (Ormig-Verfahren = Vervielfältigungsverfahren) ebenfalls aus dem Off erklärt werden und die methodisch differenziert auf den jeweiligen Leistungsstand der Schüler zugeschnitten sind. Danach beginnt die eigentliche Aufzeichnung des Unterrichts, der dem zu Beginn vorgestellten Verlauf folgt und sich in eine Reaktivierungs-, Festigungs- und zwei Kontrollphasen gliedert. Ein Schüler erklärt an der Tafel die Satzzeichen. Anschließend versuchen sich die Schüler in Stillarbeit an der Lösung der Arbeitsblätter. Die Lehrerin geht dabei durch die Klasse und gibt einzelnen Schülern Hilfestellungen. Die ermittelten Antworten der Schüler werden in Partnerarbeit anhand von Lösungsblättern kontrolliert und gemeinsam in der Klasse besprochen. Die Aufzeichnung bricht während der Kontrollphase im Klassenverband ab. (Projektleitung)    weniger

  • Hohlzylinder (v_hu_07)

    Bestandteil von: Audiovisuelle Aufzeichnungen von Schulunterricht in der DDR / Unterrichtsbeobachtung (Daten): Quellensicherung und Zugänglichmachung von Videoaufzeichnungen von DDR-Unterricht der HU Berlin

    Das Thema des Unterrichts ist die Berechnung von Volumina von Körpern, speziell von geraden Hohlzylindern. Der Lehrer, bekleidet mit einem weißen Kittel, gibt folgende drei Unterric...    mehr

    Das Thema des Unterrichts ist die Berechnung von Volumina von Körpern, speziell von geraden Hohlzylindern. Der Lehrer, bekleidet mit einem weißen Kittel, gibt folgende drei Unterrichtsziele bekannt: 1. Das Erkennen von Hohlzylindern, 2. deren Berechnung und 3. das Finden des effektivsten Weges dafür. Im Frontalunterricht sollen die Schüler zuerst Hohlzylinder beschreiben und sie auf Bildern aus dem Alltag erkennen. Dann werden Formeln an der Tafel notiert, nach denen die Körper berechnet werden. Die Schüler lösen selbstständig und schriftlich Aufgaben dazu im Heft, während der Lehrer herumgeht. Die Ergebniskontrolle erfolgt an der Tafel. Die Schüler lösen weitere Aufgaben schriftlich, die an der Tafel kontrolliert werden. Zum Schluss wird der Unterricht zusammengefasst, indem der Lehrer Fragen an die Schüler stellt und diese ihm antworten. Die von den Schülern zu bearbeitenden Arbeitsblätter werden eingespielt und kommentiert. (Projektleitung)    weniger

  • Peripherie- und Zentriwinkel (v_hu_09)

    Bestandteil von: Audiovisuelle Aufzeichnungen von Schulunterricht in der DDR / Unterrichtsbeobachtung (Daten): Quellensicherung und Zugänglichmachung von Videoaufzeichnungen von DDR-Unterricht der HU Berlin

    Der Lehrer steht vor einer relativ großen Klasse, die die ganze Stunde über sehr diszipliniert und auffallend gut mitarbeitet. Zu Beginn werden Aufgaben zur Berechnung von Winkeln a...    mehr

    Der Lehrer steht vor einer relativ großen Klasse, die die ganze Stunde über sehr diszipliniert und auffallend gut mitarbeitet. Zu Beginn werden Aufgaben zur Berechnung von Winkeln an der Tafel erläutert und dann an zwei Gruppen verteilt. Die Schüler lösen selbstständig die jeweiligen Aufgaben im Heft. Der Lehrer geht herum, schaut in die Hefte und gibt Hilfestellung. Anschließend werden im Frontalunterricht die Ergebnisse zusammengetragen. Auch die Zusatzaufgabe wird, für alle sichtbar, an der Tafel gelöst. Es folgt ein Lehrervortrag zu den Winkelsätzen. Der Lehrer stellt mit Hilfe einer Folie neue Aufgaben. Alle Ergebnisse der Stunde werden noch einmal zusammengetragen. Zum Ende vergibt der Lehrer die Hausaufgaben. (Projektleitung)    weniger

  • Satzgruppe des Pythagoras (A01-P-1101-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Leh...    mehr

    Die Lehrperson ist gerade dabei eine Aufgabe zu erklären, als der Film einsetzt: Bei einem Triathlon muss eine bestimmte Strecke geschwommen werden. Während sie erklärt, zeichnet die Lehrperson einen Plan der Schwimmstrecke an die Wandtafel. In einer Meeresbucht muss vom Strand zu einer Boje, dann parallel zum Stand zu einer anderen Boje und wieder zurück zum Strand geschwommen werden. Ein Schüler zeichnet an der Wandtafel die zu schwimmen ideale Strecke ein. Da alle 1400 Schwimmer gleichzeitig starten, ist die Schwimmstrecke vom Strand zur ersten Boje für den zu äußerst startenden Schwimmer bedeutend weiter, als die ideale Strecke. Ein anderer Schüler zeichnet an der Wandtafel den Weg dieses Schwimmers ein. Dabei wird festgestellt, dass die erste, ideale Strecke rechtwinklig zum Strand steht. Nach einer ersten Schätzung fragt die Lehrperson die Schülerinnen und Schüler, ob sie einen Lösungsvorschlag hätten, die genaue Differenz der idealen und der äußersten Schwimmstrecke zu berechnen. Aus den Schüleraussagen kann sie dann entnehmen, dass irgendwo im Schulhaus der Satz des Pythagoras dargestellt wird, und dass die Schülerinnen und Schüler sich diese Darstellungen schon angesehen, wenn auch nicht vollständig verstanden haben. Die Lehrperson lässt die noch etwas unklaren Äusserungen der Schülerinnen und Schüler stehen und benennt zuerst mit Hilfe der Klasse Katheten und Hypotenuse im rechtwinkligen Dreieck an der Wandtafel. An Hand dieser Bezeichnungen und Beschriftung gelingt es nun einem Schüler für das Dreieck an der Wandtafel den Satz des Pythagoras richtig zu formulieren. Am Hellraumprojektor ist der Satz und eine ausgedeutschte Fassung davon zu sehen. Die Schülerinnen und Schüler lesen die beiden Varianten und erklären kurz in eigenen Worten, wie sie das verstehen. Auf die Frage, was der Satz denn nun bringt, fallen die Antworten „Hausbau“ und „Berechnung einer Entfernung“. Mündlich wird besprochen, wie bei einer solchen Berechnung vorgegangen werden müsste und wie die Umformungen des Satzes funktionieren. Während der Einkreisung des Satzes von Pythagoras, die Beschriftung und Bezeichnungen im rechtwinkligen Dreieck und schliesslich der Satz selber, wurden an der Wandtafel immer wieder Notizen zur Veranschaulichung des Gesagten gemacht. Diese Darstellungen übernehmen die Schülerinnen und Schüler nun in ihr Heft. Anschliessend berechnen die Schülerinnen und Schüler mit Hilfe der Lehrperson gemeinsam die Differenz zwischen der idealen und der äußersten Schwimmstrecke der Triathlonaufstellung und übernehmen dann Skizze und Berechnungen von der Wandtafel in ihr Heft. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A01-P-1101-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion werden zuerst die Hausaufgaben kontrolliert, dabei erklären die Schülerinnen und Schüler, wie sie dabei vorgegangen sind. Es handelt sich dabei um einfache Seit...    mehr

    Zu Beginn der Lektion werden zuerst die Hausaufgaben kontrolliert, dabei erklären die Schülerinnen und Schüler, wie sie dabei vorgegangen sind. Es handelt sich dabei um einfache Seitenberechnungen im rechtwinkligen Dreieck. Im Plenum führen die Schülerinnen und Schüler, angeführt von der Lehrperson den Ergänzungsbeweis und übernehmen die dazugehörenden Ausführungen in ihr Heft. Anschliessend teilt die Lehrperson aus 80 Karten an Zweierschülergruppen je eine Karte aus, auf der mehrschrittige Pythagorasaufgaben von verschiedenem Schwierigkeitsgrad zu finden sind. Die Schülerinnen und Schüler beginnen mit den einfachsten Aufgaben. Ist eine Aufgabe fertig berechnet, kann die Karte gegen eine andere ausgetauscht werden. Da sich die Lösung der Aufgabe immer hinten auf der Karte befindet, lösen und kontrollieren die Schülerinnen und Schüler von diesen Aufgaben selbständig bis zum Lektionsende. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A02-P-1103-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben, dabei gibt die Lehrperson auch bekannt, dass in dieser und den folgenden Lektionen ein wichtiger Satz der Geometrie geler...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben, dabei gibt die Lehrperson auch bekannt, dass in dieser und den folgenden Lektionen ein wichtiger Satz der Geometrie gelernt werden soll. Dann repetiert die Klasse als erstes, wie ein - in diesem Fall rechtwinkliges - Dreieck beschriftet wird. Die entsprechenden Ausführungen hält die Lehrperson an der Wandtafel fest. An Hand dieses rechtwinkligen Dreiecks werden dann die Begriffe Kathete und Hypotenuse eingeführt. Danach lässt die Lehrperson zwei Schüler ein Werbeplakat aufhängen, auf dem über den Seiten eines rechtwinkligen Dreiecks mit den Seitenverhältnissen drei, vier und fünf Quadrate aus Rittersportschokolade geklebt wurden. Daran dass die Schülerinnen und Schüler sehen, dass neun plus sechzehn gleich fünfundzwanzig ist, stellt die Lehrperson die Behauptung auf, dass im rechtwinkligen Dreieck immer die Summe der Flächen der Kathetequadrate der Fläche des Hypotenusenquadrates entspricht. Dazu zeichnet die Lehrperson die Pythagorasfigur an die Wandtafel. Anschließend haben die Schülerinnen und Schüler Zeit, das rechtwinklige Dreieck mit den korrekten Beschriftungen, die Pythagorasfigur und den Satz des Pythagoras von der Wandtafel in ihr Theorieheft zu übernehmen. Als einige der Schülerinnen und Schüler mit dem Abschreiben fertig sind, fordert sie die Lehrperson auf, eine sprachliche Formulierung für den ins Heft geschriebenen Satz "a2+b2=c2" zu finden. Aus den Beiträgen der Schülerinnen und Schüler formuliert die Lehrperson einen vollständigen Merksatz und schreibt diesen an die Wandtafel. Die Schülerinnen und Schüler schreiben ihn ab. Abschliessend erklärt die Lehrperson, dass aber - in einer weiteren Stunde - noch bewiesen werden müsse, ob dieser Satz auch stimme. Nun lösen die Schülerinnen und Schüler einschrittige Hypotenusenberechnungen aus dem Buch und tragen die Resultate in eine vom Buch vorgegebene Tabelle ein: Die erste Aufgabe lösen sie in der Klasse mit der Lehrperson zusammen, drei weitere lösen sie selbständig, nachdem die Resultate der ersten Aufgabe verglichen wurden. Bevor die Lektion zu Ende ist werden die drei weiteren Aufgaben noch kurz im Klassenverband besprochen und die Resultate verglichen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A02-P-1103-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass heute der Satz, der am Vortag eingeführt wurde, bewiesen werden soll. In einem Lehr-Lerngespräch führt die Lehrperson den alge...    mehr

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass heute der Satz, der am Vortag eingeführt wurde, bewiesen werden soll. In einem Lehr-Lerngespräch führt die Lehrperson den algebraischen Beweis. Diesen übernehmen die Schülerinnen und Schüler von der Wandtafel in ihr Theorieheft. Wie die Schülerinnen und Schüler mit dem Abschreiben fertig sind, kommt die Lehrperson auf pythagoräische Zahlentrippel zu sprechen. Sie nennt die Zahlentrippel drei, vier, fünf und sechs, acht, zehn als Beispiel. Die Schülerinnen und Schüler nennen weitere Beispiele und suchen anschließend mit Hilfe des Taschenrechners selbständig weitere Beispiele. Nach einigen Minuten sammelt die Lehrperson die weiteren Beispiele an der Wandtafel. Anschließend löst die Klasse Übungsaufgaben. Als erstes wird im Plenum gezeigt, wie vorgegangen werden muss, wenn eine Quadratfläche, die den Summen von zwei gegebenen Quadratflächen entsprechen soll, gesucht ist. Die Schülerinnen und Schüler lösen anschließend zwei ähnliche Aufgaben selbständig. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A03-P-1104-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach der Pause wird der Ergänzungsbeweis zu Ende geführt. Danach macht die Lehrperson einen kurzen geschichtlichen Rückblick zur Person des Pythagoras und lässt danach die Schülerinnen...    mehr

    Nach der Pause wird der Ergänzungsbeweis zu Ende geführt. Danach macht die Lehrperson einen kurzen geschichtlichen Rückblick zur Person des Pythagoras und lässt danach die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras vom Buch ins Theorieheft übernehmen. Nun erarbeitet die Lehrperson mit der Klasse die Prozedur einer Aufgabe, bei der die richtige Bestimmung von Hypotenuse und Katheten in einer Planskizze eine relevante Bedeutung hat. Anschließend lösen die Schülerinnen und Schüler eine Übungsaufgabe zur Seitenberechnung in rechtwinkligen Dreiecken. Dabei schreibt die Lehrperson den Lösungsweg an die Wandtafel. Für die zwei folgenden Aufgaben wird von jeweils einer Schülerin der Lösungsweg an die Wandtafel geschrieben, währenddem die anderen selbständig an ihren Plätzen arbeiten. Die Schülerinnen und Schüler haben genügend Zeit ihre Ergebnisse mit denjenigen an der Wandtafel zu vergleichen. Lösungswege werden nicht besprochen. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A04-P-1106-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen ...    mehr

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen hat. Die Schülerinnen und Schüler arbeiten in Vierer- oder Fünfergruppen. Sie arbeiten selbständig explorierend. Gemeinsam in der Klasse wird anschließend die mathematische Herleitung des Ergänzungsbeweises nachvollzogen und zur Formel a2+ b2= c2 aufgelöst. (Berechnung der jeweiligen Flächen von a2, b2, vier kongruenten rechtwinkligen Dreiecken/ die Flächen von c2, vier kongruenten rechtwinkligen Dreiecken. Gleichsetzung der beiden grossen Quadrate und die Auflösung davon). Somit ist bewiesen, dass a2+ b2= c2 ist. Danach zeigt die Lehrperson auf dem Hellraumprojektor eine Darstellung und benennt diese als Darstellung des Satzes von Pythagoras. Ein Schüler nennt dazu die Formel a2+ b2= c2. Danach übernehmen die Schülerinnen und Schüler die grafische Darstellung, die Ausformulierung sowie Formel und Titel des Satzes von Pythagoras in ihr Theorieheft. Die Lehrperson bricht die Einzelarbeit am Ende der Stunde ab. (Projekt)    weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation