DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: "FUNKTION (MATH)" (Filter: Schlagwörter)
Anzahl der Treffer: 15
Filtern nach:
  • Unterrichtsaufzeichnung (S352_obs005)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Thema dieser Mathematikdoppelstunde sind quadratische Funktionen. Nach der Begrüßung präsentieren zu Beginn der Stunde zwei Gruppen ihre Ergebnisse aus einer vorausgehenden Gruppenarb...    mehr

    Thema dieser Mathematikdoppelstunde sind quadratische Funktionen. Nach der Begrüßung präsentieren zu Beginn der Stunde zwei Gruppen ihre Ergebnisse aus einer vorausgehenden Gruppenarbeit. In der ersten Gruppenpräsentation ordnen die Schülerinnen und Schüler mehrere Graphen jeweils einer Funktion zu. Ein Schüler aus Gruppe 2 ergänzt Lösungswege. Die Lehrkraft stellt zudem die Frage, wie die Schnittpunkte rechnerisch zu ermitteln seien. Zum Schluss der thematischen Einheit bezieht die Klasse die rechnerische Bearbeitungsform zu quadratischen Gleichungen auf den Anwendungsbereich. Die Lehrkraft stellt in diesem Zusammenhang die Frage, wo Parabeln im Alltag vorkommen. Hierfür finden die Schülerinnen und Schüler im Unterrichtsgespräch Beispiele. Die Lehrkraft teilt im Anschluss daran ein Arbeitsblatt aus, dessen Aufgaben mit zeitlichen Aufwands- und Schwierigkeitsgraden versehen sind. Während die Schülerinnen und Schüler in Partnerarbeit die Aufgaben bearbeiten, geht die Lehrkraft durch die Klasse und gibt Hilfestellung. Zu Beginn des letzten Stundendrittels erkundigt sich die Lehrkraft zunächst, wer welche Aufgabe bearbeitet hat. Mehrere Schülerinnen und Schüler gehen nacheinander nach vorne und stellen ihre Ergebnisse vor. Dabei entstehen Unterrichtsgespräche. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs008)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Thema dieser Unterrichtsstunde ist die Zerlegung linearer Faktoren. Die Schülerinnen und Schüler bearbeiten zu Beginn der Unterrichtsstunde eine Aufgabe aus dem Lehrbuch. Anhand me...    mehr

    Thema dieser Unterrichtsstunde ist die Zerlegung linearer Faktoren. Die Schülerinnen und Schüler bearbeiten zu Beginn der Unterrichtsstunde eine Aufgabe aus dem Lehrbuch. Anhand mehrerer Aufgaben ziehen sie die Wurzel mit der Absicht, dass der Radikand möglichst klein bleibt. Im Anschluss daran folgt die Ergebniskontrolle. Der Lehrer erkundigt sich, wer von den Schülern wie viele Aufgaben bearbeitet hat. Mehrere Schülerinnen lesen zunächst eine Aufgabe aus dem Lehrbuch vor und erläutern das Lösungsvorgehen. Zur Visualisierung zeichnet der Lehrer ein Koordinatensystem an die Tafel. Es entstehen Unterrichtsgespräche zur Scheitelpunktberechnung. In Gruppen bearbeiten die Schüler zwei Beispielaufgaben zur Zerlegung von Gleichungen in lineare Faktoren. Der Lehrer geht durch die Klasse und erkundigt sich, ob jemand die Beispielaufgabe bereits bearbeitet hat. Diejenigen, die die Aufgaben bereits bearbeitet haben, können den anderen Schülerinnen und Schülern helfen. Zu Beginn der zweiten Stundenhälfte bespricht die Klasse gemeinsam mit dem Lehrer eine Beispielaufgabe mit der Frage, ob die Nullstellen dergestalt richtig seien oder nicht. Im Anschluss daran bespricht die Klasse eine weitere Aufgabe aus dem Lehrbuch. In diesem Zusammenhang erläutern mehrere Schülerinnen und Schüler das Vorgehen, wie Nullstellen zu ermitteln sind. In einer längeren Phase üben die Schülerinnen und Schüler einerseits mittels des Satzes von Vieta, ob die angegebene Menge der Lösungsmenge der quadratischen Gleichung entspricht. Andererseits geben die Schülerinnen und Schüler mit der Hilfe des Satzes von Vieta die Lösung für p und q an. Der Lehrer geht in dieser Phase des Unterrichts durch die Klasse und kontrolliert ein Hausaufgabenblatt. Eine Schülerin schreibt während dieser Arbeitsphase ihre Ergebnisse zu einer Aufgabe an die Tafel an. Im letzten Stundendrittel bespricht die Klasse einzelne Aufgaben, die in der Gruppenarbeit zu bearbeiten waren. Es entstehen Gespräche zur binomischen Formel. Zum Schluss der Stunde erteilt der Lehrer die Hausaufgaben. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs010)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Thema dieser Unterrichtsdoppelstunde sind quadratische Funktionen. Nach der Begrüßung fragt die Lehrerin zu Beginn der Unterrichtsstunde, wer Kontrollbedarf zu einer Aufgabe habe. A...    mehr

    Thema dieser Unterrichtsdoppelstunde sind quadratische Funktionen. Nach der Begrüßung fragt die Lehrerin zu Beginn der Unterrichtsstunde, wer Kontrollbedarf zu einer Aufgabe habe. Anhand einer Aufgabe im Lehrbuch bittet die Lehrerin, sich daran zu erinnern, wie ein Graph im Vergleich zur Normalparabel verschoben ist. Es entstehen Gespräche zu den Verschiebungsvarianten eines Graphen. Im Anschluss daran teilt die Lehrerin ein Arbeitsblatt aus, auf dem einerseits ein Koordinatensystem mit gespiegelten respektive gestreckten und gestauchten Parabeln sowie andererseits mehrere Aufgaben zu sehen sind. Ein Schüler liest eine Aufgabe vor. Im Klassengespräch diskutieren die Lehrerin und die Schülerinnen und Schüler die Aufgaben. Es entsteht ein Tafelbild. Die Schülerinnen und Schüler lösen die restlichen Aufgaben in Einzel- oder in Partnerarbeit. Die Schüler können bei Bedarf die Lehrerin ansprechen. Im Klassengespräch besprechen die Lehrerin und die Schülerinnen und Schüler die Lösungen. Die Schülerinnen und Schüler benennen Scheitelpunkte sowie Verschiebungen und ordnen mehrere Graphen verschiedenen Funktionsgleichungen zu. Die Klasse begründet ihre Ordnungsvorschläge. Bevor die Klasse in die Pause geht, bestimmt sie einen Scheitelpunkt aus einem von der Lehrerin ausgedachten Funktionsterm. Nach der Fünf-Minuten-Pause schreibt die Lehrerin mehrere Merksätze zu quadratischen Funktionen an die Tafel an. Es entsteht ein Tafelbild. Die Schülerinnen und Schüler schreiben sich die Merksätze in ihr Heft ab und ergänzen die Ausführungen der Lehrerin. Im Lehrbuch bearbeiten die Schülerinnen und Schüler dann eine Aufgabe. Sie ordnen unterschiedliche Parabeln verschiedenen Funktionstermen zu. Zudem ergänzt die Lehrerin das Tafelbild. Im letzten Stundendrittel bearbeiten die Schüler die restlichen vier Aufgaben der aktuellen Übung. Bevor die Stunde endet, tragen die Schüler im Klassengespräch die Ergebnisse zusammen. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs016)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Thema dieser Unterrichtsstunde ist die zeichnerische Darstellung quadratischer Gleichungen. Zu Beginn der Stunde kontrolliert die Lehrkraft die Hausaufgaben. Im Anschluss daran bes...    mehr

    Thema dieser Unterrichtsstunde ist die zeichnerische Darstellung quadratischer Gleichungen. Zu Beginn der Stunde kontrolliert die Lehrkraft die Hausaufgaben. Im Anschluss daran bespricht die Klasse die Hausaufgaben. Die Schülerinnen und Schüler bestimmten die Lösungen der Gleichungen zeichnerisch. Hierzu visualisiert die Lehrkraft mehrere Koordinatensysteme mit mehreren Parabeln und linearen Funktionen. Die Schülerinnen und Schüler stellen einen Zusammenhang zwischen den Gleichungen und den Skizzen her und ermitteln zugleich Schnittpunkte. Es entstehen Gespräche zu den Zusammenhängen. Zwei Funktionen tragen die Schülerinnen und Schüler in eine Mathe-App ein und wenden die binomische Formel auf eine Gleichung an. Zum Ende der Stunde wiederholt die Lehrkraft die Inhalte der aktuellen Unterrichtsstunde und erteilt die Hausaufgaben. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs022)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Thema dieser Unterrichtsstunde sind Funktionsgleichungen. Nach der Begrüßung stellt die Lehrkraft die Inhalte der Unterrichtsstunde dar und teilt die Klassenarbeiten aus. Zwei Schül...    mehr

    Thema dieser Unterrichtsstunde sind Funktionsgleichungen. Nach der Begrüßung stellt die Lehrkraft die Inhalte der Unterrichtsstunde dar und teilt die Klassenarbeiten aus. Zwei Schülerinnen wiederholen die Inhalte der letzten Unterrichtsstunde. Die Schülerinnen und Schüler visualisieren pantomimisch unterschiedliche Gleichungen. In einer längeren Unterrichtsphase tragen die Schülerinnen und Schüler die Parameter vor. Hierzu nutzen sie das interaktive Whiteboard. Ein Schüler hält einen Kurzvortrag zum Parameter D. Ein weiterer Schüler hält einen Kurvortrag zum Parameter E. Nach jedem Kurzvortrag applaudieren die restlichen Schüler. Die Lehrkraft fasst die Kurzvorträge auf einem Whiteboard zusammen. Zudem unterbricht sie zwischendurch die Vorträge: Die Schülerinnen und Schüler stehen auf und spielen "Funktion“, in dem sie die von der Lehrkraft reingerufene Funktionen pantomimisch visualisieren. Sie beklatschen sich dabei gegenseitig. Im Anschluss daran bearbeiten die Schülerinnen und Schüler zwei Beispielaufgaben, die die Lehrkraft an dem interaktiven Whiteboard visualisiert. Die Schülerinnen und Schüler besprechen die Merkmale einer Gleichung. Dabei nimmt die Lehrkraft Bezug auf die pantomimische Darstellung. Danach zeichnen die Schülerinnen und Schüler ein Koordinatensystem in ihr Heft, um die Gleichung in Partnerarbeit zeichnerisch darzustellen. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Sie visualisiert dann den Lösungsweg einer Schülerin und den eines Schülers am interaktiven Whiteboard. Die restlichen Schülerinnen und Schüler kommentieren diese Ergebnisse. Im letzten Stundendrittel teilt die Lehrkraft ein Arbeitsblatt aus, das die Schülerinnen und Schüler in Partnerarbeit lösen. Sie ermitteln aus Funktionsgleichungen den Scheitelpunkt. Hierzu knicken sie das Arbeitsblatt, lesen sich gegenseitig eine Aufgabe vor und kontrollieren ihre Ergebnisse gegenseitig. Diejenigen, die fertig sind, bearbeiten die restlichen Aufgaben. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Für die dritte Aufgabe bittet die Lehrkraft einen Aspekt der Aufgabe zunächst gemeinsam zu besprechen. In dieser Aufgabe bestimmen die Schülerinnen und Schüler die Funktionsgleichung in Scheitelpunktform. Gegeben sind nur zwei Punkte. Die Klasse bespricht gemeinsam das Vorgehen zur Ermittlung des unbekannten Werts. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs032)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Im Zentrum dieser Unterrichtsdoppelstunde steht das Lösen von quadratischen Gleichungen. Nach der Begrüßung thematisiert die Lehrkraft zu Beginn der Doppelstunde Organisatorisches. ...    mehr

    Im Zentrum dieser Unterrichtsdoppelstunde steht das Lösen von quadratischen Gleichungen. Nach der Begrüßung thematisiert die Lehrkraft zu Beginn der Doppelstunde Organisatorisches. Danach bearbeitet die Klasse zu Beginn der Stunde eine Aufgabe aus der letzten Klassenarbeit. Die Lehrkraft visualisiert das Thema der aktuellen Stunden am interaktiven Whiteboard, Beispielaufgaben und die p/q Formel. Die Schülerinnen und Schüler benennen die Form der Gleichung mit einer Begründung und bestimmen, ob es sich bei der Gleichung um einen Spezialfall handelt. Zudem wird die p/q Formel angewendet sowie die Möglichkeiten und Grenzen dieser Formel besprochen. Es entsteht eine Visualisierung am interaktiven Whiteboard zum Rechenweg und eine Schlussfolgerung zu den Lösungsvarianten einer quadratischen Gleichung. Im Anschluss daran bearbeitet die Klasse in einer längeren Arbeitsphase drei Aufgaben. Die Klasse bestimmt in der ersten Aufgabe die Lösungsmenge mit einer Methode eigner Wahl. In der zweiten Aufgabe interpretiert die Klasse die Flugbahn einer Kugel beim Kugelstoßen und ermittelt die Funktionsgleichung anhand desselben Graphen. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Im letzten Stundendrittel sammelt die Lehrkraft zunächst Feedback zur ersten Aufgabe und die Klasse erörtert dann, ob sich bei den Aufgaben um Spezialfälle handelt oder nicht. Zwei Schüler und eine Schülerin präsentieren zum Ende der Stunde die Ergebnisse zur zweiten Aufgabe. Es entstehen Gespräche zu den sachbezogenen Aussagen zum Geschlecht der Kugelstoßerin oder des Kugelstoßer. Die Lehrkraft erteilt schließlich die Aufträge für die nächste Stunde. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs033)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Im Zentrum dieser Unterrichtsdoppelstunde stehen Parabeln. Zu Beginn der Doppelstunde bearbeitet die Klasse mittels des eigenen Handys ein Quiz, das am interaktiven Whiteboard visu...    mehr

    Im Zentrum dieser Unterrichtsdoppelstunde stehen Parabeln. Zu Beginn der Doppelstunde bearbeitet die Klasse mittels des eigenen Handys ein Quiz, das am interaktiven Whiteboard visualisiert wird. Es werden mehrere Fragen, Graphen und Antwortoptionen visualisiert. Die Lehrkraft gibt der Klasse eine begrenzte Bearbeitungszeit vor. Danach fragt die Lehrkraft durch Handzeichen ein Stimmungsbild ab. Zugleich entstehen Gespräche. Im Anschluss daran folgt ein Arbeitsauftrag, den eine Schülerin zunächst vorliest. Dann bearbeitet die Klasse den Arbeitsauftrag in Gruppen. Die Klasse zeichnet in der ersten Aufgabe die Graphen von verschiedenen Funktionen in ein gemeinsames Koordinatensystem und benennt Gemeinsamkeiten und Unterschiede. In der zweiten Aufgabe erörtert die Klasse, welche Auswirkungen bestimmte Werte auf eine Parabel haben. Die Klasse kontrolliert die Aufgaben mittels einer Mathematik-App und erarbeitet zugleich eine Präsentation. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Im Anschluss daran präsentieren zwei Schülerinnen und ein Schüler die Ergebnisse aus ihrer Gruppenarbeit. Zum Abschluss der Präsentation applaudiert die Klasse. Im Anschluss daran gibt die Klasse ihre Einschätzung zur Präsentation. Die Lehrkraft bewertet die Präsentation und die Gruppenarbeit der vortragenden Schülerinnen und Schüler. Nach dem Präsentationsteil gibt die Klasse verschiedene Werte in die Mathematik-App ein. Eine Schülerin ahmt mit ihren Armen eine Parabel nach. Es entstehen Gespräche zur Streckung und Stauchung einer Parabel. Zum Ende der Stunde verweist die Lehrkraft auf die Inhalte der nächsten Stunde und erteilt einen Arbeitsauftrag für die nächste Stunde. Zudem verkündet die Lehrkraft die Noten zum Quiz. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs035)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Im Zentrum dieser Unterrichtsstunde steht eine Textaufgabe. Zu Beginn der Stunde betrachtet die Klasse eine Visualisierung, in der eine Person einen Ball in einen Basketballkorb wi...    mehr

    Im Zentrum dieser Unterrichtsstunde steht eine Textaufgabe. Zu Beginn der Stunde betrachtet die Klasse eine Visualisierung, in der eine Person einen Ball in einen Basketballkorb wirft. Ein Schüler beschreibt das Bild, weitere Schüler und eine Schülerin ergänzen. Die Lehrkraft schreibt zwei Begriffe „Realität“ und „Mathematik“ an die Tafel. Die Klasse beschreibt dann das Bild im Rückgriff auf die Begriffe: Was lässt sich am Bild zur Mathematik und was lässt sich zur Realität zuordnen. Als Überschrift wählt die Lehrkraft „Vereinfachen/Strukturieren“. Es entstehen Gespräche zur Bedeutung der Überschrift. Die Lehrkraft erweitert dann das Bild. Es sind mehrere Werte mit einer Tabelle zu sehen. Als Aufgabe bearbeitet die Klasse in einer längeren Arbeitsphase die Frage, ob ein bestimmter Punkt auf einer Parabel liegt. Die Klasse erarbeitet eine Funktionsgleichung heraus. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Im letzten Stundendrittel tragen die Klasse und die Lehrkraft die Ergebnisse zusammen. Es entstehen Gespräche zum Lösungsweg. Es entsteht ein Tafelbild mit einem Rechenweg, einem Antwortsatz und einer Interpretation. Zum Ende der Stunde erteilt die Lehrkraft die Hausaufgaben. Zudem werden Fragen zu den Hausaufgaben geklärt. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs042)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Im Zentrum dieser Unterrichtsstunde stehen periodische Funktionen. Nach der Begrüßung projiziert die Lehrkraft zu Beginn der Stunde einen Eisberg mit Sprechblasen an die Wand, die e...    mehr

    Im Zentrum dieser Unterrichtsstunde stehen periodische Funktionen. Nach der Begrüßung projiziert die Lehrkraft zu Beginn der Stunde einen Eisberg mit Sprechblasen an die Wand, die eine Schülerin vorliest. Es entstehen Gespräche zur Erderwärmung. Hierzu visualisiert die Lehrkraft die Durchschnittstemperaturen aus der Arktis. Im Anschluss daran bespricht die Klasse mit der Lehrkraft die Eigenschaften einer periodischen Funktion. Hierzu entsteht ein Tafelbild. Zudem bespricht die Klasse, wie man eine periodische Funktion modelliert beziehungsweise, welcher Term zu einer derartigen Funktion führen kann. Die Schülerinnen und Schüler bearbeiten dann in Einzelarbeit ein Arbeitsblatt, in dem nochmals die Eigenschaften und die Bedingungen für eine Sinusfunktion zu erörtern sind. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Danach besprechen die Lehrkraft und die Schülerinnen und Schüler die Ergebnisse und einen Lückentext, den die Lehrkraft an die Wand projiziert. Vier Schülerinnen und zwei Schüler füllen den Text im Klassengespräch aus. Dabei entstehen Gespräche zur Periodenlänge. Im letzten Stundendrittel greift die Lehrkraft erneut auf das Bild mit dem Eisberg zurück. Die Klasse vergleicht den Graphen der Sinusfunktion mit den Graphen der durchschnittlichen Temperaturen Alaskas. Zudem erörtert sie die Frage, inwieweit sich die Sinusfunktion zur Modellierung der Temperaturen Alaskas eigne. Zum Ende der Stunde besprechen die Klasse und die Lehrkraft die Ergebnisse. (DIPF/gf)    weniger

  • Unterrichtsaufzeichnung (S352_obs058)

    Bestandteil von: TVD - TALIS-Videostudie Deutschland - Unterrichtsbeobachtung / Unterrichtsbeobachtung (Daten): TVD

    Im Zentrum dieser Unterrichtsdoppelstunde steht die Flugbahn einer Rakete. Zu Beginn der Stunden fordert die Lehrkraft dazu auf, alles zu thematisieren, was den Schülerinnen und Sc...    mehr

    Im Zentrum dieser Unterrichtsdoppelstunde steht die Flugbahn einer Rakete. Zu Beginn der Stunden fordert die Lehrkraft dazu auf, alles zu thematisieren, was den Schülerinnen und Schüler zu einem visualisierten Koordinatensystem und Graphen einfällt. Danach bespricht die Lehrkraft mit der Klasse die Hausaufgaben. Die Schülerinnen und Schüler zeichnen mehrere Graphen. Zudem zeigen sie Fehler bei der Zuordnung von Graphen zu Funktionsgleichungen auf. Es entstehen Gespräche zu den Lösungen. Im Anschluss daran beschreiben die Schülerinnen und Schüler an dem interaktiven Whiteboard visualisierte Bilder und stellen einen Bezug zum Thema der aktuellen Unterrichtsstunde her: Die Flugbahn einer Rakete mit Hilfe einer Parabel. Die Schülerinnen und Schüler formulieren mathematische Fragestellungen. Die Lehrkraft teilt ein Arbeitsblatt aus. Ein Schüler liest die Aufgabenstellung vor. In Gruppenarbeit beantworten die Schülerinnen und Schüler drei Fragen: In welcher Höhe startet die Rakete, wann trifft die Rakete auf den Boden und welche Flughöhe erreicht die Rakete zu welchem Zeitpunkt? Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Danach besprechen die Schülerinnen und Schüler die Ergebnisse im Plenum. Die Schülerinnen und Schüler nennen neben dem Ergebnis auch ihren Lösungsweg. Detailliert bespricht die Klasse das Vorgehen bei der Berechnung des Zeitpunkts des Auftreffens der Rakete auf den Boden. Im Plenum stellt die Klasse die Gleichung nach t (Zeitpunkt) um. Die Klasse stellt mit der Lehrkraft heraus, dass es für diese Gleichung keine Lösung gibt. Die Schülerinnen und Schüler begründen, weshalb es keine Lösung gibt und finden im letzten Stundendrittel mittels der Scheitelpunktform eine andere Lösungsvariante heraus. Die Lehrkraft geht durch die Klasse und gibt Hilfestellungen. Dann löst die Lehrkraft mit Hilfe der Wortmeldungen der Schülerinnen und Schüler eine Gleichung am interaktiven Whiteboard. Teile des Lösungsweges übernimmt die Klasse in ihr Heft. Schließlich bespricht die Klasse den letzten Schritt, um den Term t (Zeitpunkt) zu bestimmen. Zum Ende der Stunde erteilt die Lehrkraft die Hausaufgaben. (DIPF/gf)     weniger


Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2022 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation