DE | EN
Logo fdz-Bildung
Projekt/Study Survey
Downloads and Links
dauerhaft abrufbar über die DOI:
10.7477/1:1:1
[Videos, Transkripte, Kodierungen, Beschreibungen]
Transkriptionsmanual-Video_Pythagoras.pdf  
[Transkriptionsmanual] 64.14 kB Details

Classroom observation (data): Pythagorasmodul

Die Datenerhebung der videogestützten Unterrichtsstudie gliederte sich in vier Module, die im Laufe des Schuljahres 2002/03 in 20 deutschen Klassen der 9. Jahrgangsstufe und in 20 Schweizer Klassen der 8. Jahrgangsstufe durchgeführt wurden: Eingangsbefragung, Pythagorasmodul, Textaufgabenmodul und Ausgangsbefragung. Das Pythagorasmodul bestand aus der Videoaufzeichnung von drei aufeinander folgenden Lektionen zur Einführung in die Satzgruppe des Pythagoras. Neben der Standardisierung des Inhalts wurde von den Lehrpersonen zusätzlich die Verwendung eines Beweises verlangt, ansonsten waren sie frei in der didaktischen Gestaltung ihres Unterrichts, sollten jedoch einen möglichst normalen, alltäglichen Unterricht zeigen. Direkt im Anschluss an die Videografierung der Unterrichtseinheit wurden die Schüler zu den Unterrichtsstunden und ihrem Lernverhalten befragt. Im Umfeld der videografierten Pythagorasstunden wurden darüber hinaus die auf die Satzgruppe des Pythagoras bezogenen Kompetenzen der Schüler in einem Vortest und Nachtest erfasst. Außerdem wurden im Rahmen des Moduls mit den Lehrpersonen Interviews zur Reflexion der Unterrichtseinheiten und zur Erfassung von subjektiven Theorien durchgeführt. (DIPF/Projekt)    less

StudyPythagoras - Videogestützte Unterrichtsstudie

LeaderKlieme, Eckhard; Reusser, Kurt; Pauli, Christine

Persistent IdentifierDOI: 10.7477/1:1:1

CitationKlieme, E.; Pauli, C.; Reusser, K. (2014). Unterrichtsqualität und mathematisches Verständnis in verschiedenen Unterrichtskulturen - Unterrichtsbeobachtung: Pythagorasmodul (Pythagoras) [Datenkollektion: Version 1.0]. Datenerhebung 2002-2003. Frankfurt am Main: Forschungsdatenzentrum Bildung am DIPF. http://dx.doi.org/10.7477/1:1:1

Time Period of Data Collection2002 - 2003

Collection coverage (Geographic)Germany; Schweiz

Collection modeObservation: Field Observation (Non-participant)
Specification: Videographie ; Nicht-teilnehmende Beobachtung

Specification of Survey UnitsLehrkräfte; Schüler

Resource type Qualitative, non-standardized or low-standardized data material
(Videos, Transkripte, Kodierungen, Beschreibungen)

language(s)German; Swiss German

NotesZur Erhebung des Pythagorasmoduls stehen folgende Materialien zur Verfügung: Videoaufzeichnungen von beobachteten Unterrichtssituationen (in einigen Fällen steht hierzu neben der Lehrerkamera auch noch zusätzlich die Schülerkamera zur Verfügung), Transkripte der Videoaufnahmen, Fotografien der in den Unterichtseinheiten verwendeten Tafelbilder, Lektionsbeschreibungen (narrative Kurzbeschreibung des Unterrichts in den videografierten Lektionen) sowie Lektionsübersichten (tabellarische Darstellung des Ablaufs der Lektion im zeitlichen Verlauf). Die Audioaufnahmen der Interviews mit Lehrkräften, welche sich auf das Pythgorasmodul beziehen, sind in einer eigenen Erhebung erschlossen, können aber auch über die Aufzeichnungseinheiten der jeweiligen Pythagoraslektion direkt angesteuert werden.

AvailabilityDie audiovisuellen Daten und die nicht anonymisierten Transkripte sind aus Datenschutzgründen nur für registrierte Nutzer auf Antrag zugänglich. Die anonymisierten Transkripte sowie die Tafelbilder sind nach der Registrierung einsehbar. Die Lektionsbeschreibungen (textuelle Beschreibung der Unterrichtssituation) und Lektionsübersichten (Kodierung der Unterrichtssituation) sind frei verfügbar. Es gelten die allgemeinen Nutzungsbedingungen des Anbieters.

Archiving research data centreResearch Data Centre for Education (FDZ Bildung)

CopyrightKlieme, Eckhard
Pauli, Christine
Reusser, Kurt

Publication date2014-06-12

Surveys of this studyQuestionnaire survey (Questionnaire scales): Zwischenbefragung (Pythagoras)
Interview (data): Pythagoras
Questionnaire survey (Questionnaire scales): Eingangsbefragung (Pythagoras)
Questionnaire survey (Questionnaire scales): Abschlussbefragung (Pythagoras)
Classroom observation (data): Textaufgabenmodul (Pythagoras)

Downloads and Links
dauerhaft abrufbar über die DOI:
10.7477/1:1:1
[Videos, Transkripte, Kodierungen, Beschreibungen]
Transkriptionsmanual-Video_Pythagoras.pdf  
[Transkriptionsmanual] 64.14 kB Details
     1     

Recorded units of survey

Request: THEORIE (Filter: Schlagwörter)
ERGEBNISKONTROLLE (Filter: Schlagwörter)

Number of results: 23
  • Satzgruppe des Pythagoras (A01-P-1101-Lek2)

    Zu Beginn der anschließenden Lektion arbeiten die Schülerinnen und Schüler am Hefteintrag weiter. Danach wird ein rechtwinkliges Dreieck auf einer Projektorfolie noch einmal richtig...    more

    Zu Beginn der anschließenden Lektion arbeiten die Schülerinnen und Schüler am Hefteintrag weiter. Danach wird ein rechtwinkliges Dreieck auf einer Projektorfolie noch einmal richtig beschriftet, Hypotenuse und Katheten werden festgelegt. Da dieses Dreieck anders beschriftet ist, als das Dreieck der letzten Stunde, formuliert ein Schüler den Satz des Pythagoras für dieses Dreieck. Danach gibt die Lehrperson eine Strategie bekannt, wie zur korrekten Berechnung eines rechtwinkligen Dreiecks mit dem Satz des Pytagoras vorgegangen werden muss: Es muss immer zuerst die Hypotenuse bestimmt werden. Nach einem kurzen Unterbruch, folgt eine Übungssequenz in welcher die Schülerinnen und Schüler selbständig den Satz des Pythagoras für gegebene rechtwinklige Dreiecke formulieren und von weiteren die fehlende Seite berechnen. Anschließend werden die Resultate kontrolliert und die Lösungswege dazu bekanntgegeben. Wie alle Aufgaben korrigiert sind, hält die Lehrperson einen geschichtlichen Vortrag über das Leben und Wirken des Pythagoras. Vor dem Ende der Lektion werden die Hausaufgaben bekannt gegeben. (Projekt)    less

  • Satzgruppe des Pythagoras (A04-P-1106-Lek1)

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue...    more

    Zu Beginn dieser Lektionsreihe informiert die Lehrperson die Schülerinnen und Schüler über das Filmteam. Darauf zeigt die Lehrperson auf einer Folie am Hellraumprojektor zwei blaue Quadrate (entsprechen a2, b2) und ein grünes (entspricht c2) Quadrat. Der Auftrag dazu lautet: Vergleiche die grünen und die zwei blauen Flächen (=Grundlage für Ergänzungsbeweis). Das wird zuerst gemeinsam in der Klasse besprochen. Dabei äußern die Schülerinnen und Schüler verschiedene Vermutungen, welche Figur größer ist. In der Folge leitet die Lehrperson die Schülerinnen und Schüler an, diese Vermutungen zu überprüfen und zu begründen oder zu beweisen. Daraufhin schieben die Schülerinnen und Schüler ihre Tische zu Gruppentischen zusammen (jeweils vier bis fünf Schülerinnen und Schüler). Danach verteilt die Lehrperson Arbeitsblätter, auf denen dieselben Quadrate abgebildet sind. Die Schülerinnen und Schüler arbeiten nun in ihren Gruppen selbständig entdeckend, wobei sie die Quadrate ausschneiden/ zerschneiden oder indem sie berechnen können. Die Lehrperson unterbricht diese Sequenz und nun sammelt die Klasse die Gruppenergebnisse. Diese werden jeweils von einer Gruppe vorgestellt und die Lehrperson schreibt die Ergebnisse an die Wandtafel. Die Klasse einigt sich mehr oder weniger darauf, dass die Flächen mit Einbezug von Messungenauigkeiten gleich groß sind. Danach stellt die Lehrperson den Beginn eines mathematischen Lösungsweges einer der fünf Gruppen vor. Dieser Lösungsweg entspricht dem Ergänzungsbeweis. Die Lehrperson leitet die Gruppen nun dazu an, die zwei Flächen c2+ vier Dreiecke und a2+ b2+ vier Dreiecke zu berechnen und zu vergleichen. In der Klasse wird aufgrund von Schwierigkeiten einzelner Schülerinnen und Schüler das Vorgehen schrittweise besprochen und von Schülerinnen und Schülern erklärt. Die Lösungen berechnen die Schülerinnen und Schüler in Vierer- oder Fünfergruppen. Die Gruppenarbeit wird durch eine Pause unterbrochen. (Projekt)    less

  • Satzgruppe des Pythagoras (A04-P-1106-Lek2)

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen ...    more

    Zu Beginn dieser Stunde arbeiten die Schülerinnen und Schüler weiter an der mathematischen Herleitung des Ergänzungsbeweises, womit die Klasse in der letzten Stunde bereits begonnen hat. Die Schülerinnen und Schüler arbeiten in Vierer- oder Fünfergruppen. Sie arbeiten selbständig explorierend. Gemeinsam in der Klasse wird anschließend die mathematische Herleitung des Ergänzungsbeweises nachvollzogen und zur Formel a2+ b2= c2 aufgelöst. (Berechnung der jeweiligen Flächen von a2, b2, vier kongruenten rechtwinkligen Dreiecken/ die Flächen von c2, vier kongruenten rechtwinkligen Dreiecken. Gleichsetzung der beiden grossen Quadrate und die Auflösung davon). Somit ist bewiesen, dass a2+ b2= c2 ist. Danach zeigt die Lehrperson auf dem Hellraumprojektor eine Darstellung und benennt diese als Darstellung des Satzes von Pythagoras. Ein Schüler nennt dazu die Formel a2+ b2= c2. Danach übernehmen die Schülerinnen und Schüler die grafische Darstellung, die Ausformulierung sowie Formel und Titel des Satzes von Pythagoras in ihr Theorieheft. Die Lehrperson bricht die Einzelarbeit am Ende der Stunde ab. (Projekt)    less

  • Satzgruppe des Pythagoras (A07-P-1110-Lek1)

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden aufzuräumen. Danach findet der eigentliche Unterrichtseinstieg ...    more

    Die Lehrperson fordert die Schülerinnen und Schüler zu Beginn der ersten Lektion auf, Dinge die nicht gebraucht werden aufzuräumen. Danach findet der eigentliche Unterrichtseinstieg statt. Die Lehrperson hält eine zusammengeknotete Schnur in der Hand und sagt der Klasse, dass sie sich diese Stunde mit einer solchen Schnur beschäftigen werden. In einem fragend-entwickelnden Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler, wozu eine zusammengeknüpfte Schnur, überhaupt gebraucht werden kann. Darauf verteilt die Lehrperson je eine Schnur pro Gruppentisch. Währenddem erzählt sie, wozu die Ägypter die Seile verwendeten. Die Klasse benennt danach das Spezielle, das diesen zusammengeknüpften Schnüren gemeinsam ist. Als nächstes verteilt die Lehrperson ein Arbeitsblatt. Anhand von fünf Aufträgen werden die Schülerinnen und Schüler zur Beschäftigung mit den Schnurabschnitten angeleitet. Sie arbeiten selbständig explorativ in dreier oder vierer Gruppen an ihren Gruppentischen. Die Lernenden bilden dabei zuerst ein rechtwinkliges Dreieck. Danach bestimmen sie die einzelnen Seitenlängen des Schnurdreiecks und bestimmen, wo sich der rechte Winkel im Dreieck befindet. Dies versuchen sie in Worten schriftlich zu erklären. Zum Schluss schreiben sie sich Fragen auf, die sich stellten. Die Ergebnisse werden gemeinsam ausgewertet. Dabei schreibt die Lehrperson alle drei Seitenlängen der verschiedenen Gruppenseile an die Wandtafel. Nachdem die Lage des rechten Winkels besprochen wurde, wird in einem fragend-entwickelnden Lehrgespräch die Beschriftung des rechten Winkels und die Benennung der längsten und der beiden kürzeren Seiten im rechtwinkligen Dreieck (Hypotenuse, Katheten) geklärt. Danach leitet die Lehrperson die Lernenden an, die neu gelernten Bezeichnungen der Seiten in ihr Heft zum Dreieck, das sie zuvor in der Gruppenarbeit in ihr Heft gezeichnet hatten, zu notieren. Die Notizen werden darauf von den Schülerinnen und Schülern in Einzelarbeit in ihr Heft übernommen. Nach der Stillarbeit bestimmt die Klasse im öffentlichen Unterrichtsgespräch die Hypotenusen und Katheten der Schnurdreiecke anhand der Längenmaße an der Wandtafel. Die Lehrperson notiert dies an die Wandtafel. Zum Schluss der Stunde schreibt die Lehrperson Fragen, die sich bei der Gruppenarbeit gestellt haben, ebenso an die Wandtafel. (Projekt)    less

  • Satzgruppe des Pythagoras (A07-P-1110-Lek2)

    In der zweiten Stunde werden die Fragen der Gruppenarbeit der ersten Stunde zusammengetragen. Danach zeichnet die Lehrperson drei rechtwinklige Dreiecke an die Wandtafel. Das Ziel ...    more

    In der zweiten Stunde werden die Fragen der Gruppenarbeit der ersten Stunde zusammengetragen. Danach zeichnet die Lehrperson drei rechtwinklige Dreiecke an die Wandtafel. Das Ziel dabei ist, die Seitenbenennungen in rechtwinkligen Dreiecken zu trainieren. Als Training benennt die Klasse nun jeweils die Hypotenuse und die Katheten richtig. In der Folge erteilt die Lehrperson den Schülerinnen und Schülern den Auftrag, den Zusammenhang der Seiten beim rechtwinkligen Dreieck anhand eines Arbeitsblattes zu besprechen. Die Schülerinnen und Schüler arbeiten selbständig entdeckend in Gruppen an den Gruppentischen. Dabei geht es um die Entdeckung und das Verständnis verschiedener Zahlentripel und die Ausformulierung des Satzes von Pythagoras. Nach der Gruppenarbeit werden die Entdeckungen unter der Leitung der Lehrperson in der Klasse ausgetauscht. Dabei wird der Satz des Pythagoras ausformuliert und die Formel des Satzes wird im gemeinsamen Lehr- und Lerngespräch erarbeitet, genauso wie der Kehrsatz (Das Dreieck ist rechtwinklig, wenn ...). Zur Überprüfung des Kehrsatzes wird von einem Schüler an der Wandtafel eine Aufgabe gelöst. Nun bezeichnet die Lehrperson das, in dieser Lektion entwickelte, als den Satz des Pythagoras. Darauf schreiben die Schülerinnen und Schüler Titel, Formel und die Ausformulierung des Satzes von Pythagoras von der Wandtafel in ihr Heft ab. Zum Schluss der Lektion verteilt die Lehrperson die Hausaufgaben. (Projekt)    less

  • Satzgruppe des Pythagoras (A09-P-1114-Lek2)

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der L...    more

    Nach der Pause werden die Zahlentrippel der Schülerinnen und Schüler gesammelt und an Hand der These überprüft. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson den Satz des Pythagoras als Merksatz und schreiben in ihr Theorieheft. Ein Schüler übersetzt den Merksatz in die Formel a2+ b2= c2. Um zu überprüfen, ob die Formel denn nicht auch für andere Dreiecke gelten könnte, zeichnet jeder Schüler und jede Schülerin ein beliebiges Dreieck und probiert den Satz daran aus. Die Lehrperson stellt stellvertretend für die Schülerinnen und Schüler fest, dass der Satz also nur im rechtwinkligen Dreieck gültig ist. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson die Umkehrformeln zum Satz des Pythagoras, für die sie in zwei einschrittigen Anwendungsbeispielen Verwendung finden. Von zwei gegebenen rechtwinkligen Dreiecken ist je eine Seite gesucht. Bei beiden Aufgaben wird zuerst das Vorgehen in der Klasse besprochen, dann rechnen die Schülerinnen und Schüler selbständig die fehlende Seite aus und schließlich wird die Aufgabe und deren Lösungsweg in der Klasse verglichen. (Projekt)    less

  • Satzgruppe des Pythagoras (A10-P-1117-Lek1)

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearb...    more

    Zu Beginn der ersten Lektion dieser Pythagorasreihe klärt die Lehrperson organisatorisches. Dabei informiert die Lehrperson die Klasse, dass in den ersten beiden Lektionen durchgearbeitet wird und sie nur eine zweiminütige Pause machen werden. Darauf wechselt die Lehrperson ins Englische und zeigt der Klasse einen Comic am Hellraumprojektor mit englischen Sprechblasen. Dies ist der Beginn einer zum größten Teil problemorientierten Lektion. Bei diesem Comic fragt ein Ameisenkind seinen Vater, ob es eine dumme Frage stellen dürfe. Der Vater bejaht dies ebenso auf dem ersten Bild und antwortet, dass man nur über dumme Fragen etwas lernen könne. So stellt also das Ameisenkind auf dem zweiten Bild seine Frage: „Why is the square of the hypotenus equal to the sum of the squares of the two other sides?“ Auf dem dritten Bild antwortet nun der Ameisenvater, diese Frage sei nicht blöd genug. Nun teilt die Lehrperson Auftragsblätter aus, auf welche der Comic kopiert ist und gibt den Schülerinnen und Schülern den Auftrag, den Comic zuerst in Einzelarbeit zu übersetzen und danach in Partnerarbeit zu besprechen. In der Partnerarbeit soll dabei die Frage besprochen werden, welche Aussage in der Frage des Ameisenkindes steckt. Diese zwei Aufträge stehen unterhalb des Comics auf dem Auftragsblatt. Insgesamt sind sechs Aufträge/ Themenbereiche auf diesem Arbeitsblatt notiert, welche als Programm für die nächsten drei Lektionen dienen werden. Danach arbeiten die Schülerinnen und Schüler in Einzelarbeit an der Übersetzung. Die Schülerinnen und Schüler tauschen sich dabei auch aus. Gemeinsam werden in der Klasse darauf die einzelnen Sprechblasen übersetzt. Nach dieser öffentlichen Sequenz leitet die Lehrperson über zum zweiten Auftrag und sagt, dass sie sich mit der Frage des Ameisenkindes in den nächsten Stunden beschäftigen werden. Nun übersetzen die Schülerinnen und Schüler die Frage des Ameisenkindes und die Lehrperson schreibt die Übersetzung an die Wandtafel: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Nun klärt die Klasse Begriffe dieser deutschen Übersetzung (Hypotenuse, äquivalent). Die Lehrperson informiert die Schülerinnen und Schüler darauf über das weitere Programm in den drei Lektionen und verweist dabei auf das Auftragsblatt, das die Schülerinnen und Schüler zur Hand nehmen. Die Lehrperson gibt nun den Auftrag zur Bearbeitung der nächsten Aufgabe. Es geht dabei um die Überprüfung der Frage des Ameisenkindes: „ Warum ist das Quadrat der Hypotenuse äquivalent zu der Summe der Quadrate der zwei anderen Seiten“. Dazu erhalten die Schülerinnen und Schüler ein Bearbeitungsblatt von der Lehrperson. Nun arbeiten die Schülerinnen und Schüler in dreier oder vierer Gruppen an ihren Gruppentischen selbständig entdeckend. Nach der Gruppenarbeit werden in einer öffentlichen Phase die Figuren des Bearbeitungsblattes besprochen. Bei diesen drei Figuren handelt es sich um die Darstellung von Dreiecken und der Quadrierung ihrer jeweiligen Seiten. Ein Dreieck ist dabei stumpfwinklig, ein anderes spitzwinklig und das dritte Dreieck ist rechtwinklig. Bei der Auswertung stellt die Lehrperson die Frage, weshalb die Aussage einmal stimmt und zweimal nicht, obwohl die drei Seiten der Dreiecke gleich lang sind. Darauf äußert eine Schülerin die Vermutung, dass diese Aussage nur bei rechtwinkligen Dreiecken zutrifft. Die Lehrperson nimmt diese Aussage auf und die Schülerinnen und Schüler überprüfen diese Vermutung, indem sie in ihre Bearbeitungsblätter drei Falze machen, wodurch rechtwinklige Dreiecke entstehen. Diese messen sie und berechnen, ob diese Aussage zutrifft. Da die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras kennen, ist das als einfache Aufgabe einzustufen. Im öffentlichen Lehr- und Lerngespräch äußern sich die Schülerinnen und Schüler danach, dass ihre Ergebnisse ungefähr stimmen und die Lehrperson erläutert die Berechnungsungenauigkeiten in Folge des Messens. Zur Bestätigung ihrer Vermutung (dass das Quadrat der Hypotenuse äquivalent ist zu der Summe der Quadrate der zwei anderen Seiten, wenn das Dreieck rechtwinklig ist) zeigt die Lehrperson am Hellraumprojektor eine Folie, auf der der Satz des Pythagoras mit Schokoladentäfelchen dargestellt wird. Danach übernehmen die Schülerinnen und Schüler die Ausformulierung des Satzes von Pythagoras auf ihr Auftragsblatt. Später fasst ein Schüler zusammen, was bisher in dieser Stunde behandelt wurde und äußert, dass nun die Allgemeingültigkeit dieser erarbeiteten Aussage bewiesen werden müsse. Dies bestätigt die Lehrperson. Vor einer kurzen Pause führt die Lehrperson noch kurz in den nächsten Arbeitsauftrag ein, welcher nach der Pause gelöst werden soll. (Projekt)    less

  • Satzgruppe des Pythagoras (A11-P-1118-Lek1)

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Geme...    more

    Die Lehrperson steigt mit einer Geschichte in die Pythagoraslektionsreihe ein. Es ist die Geschichte des Dorfes Nidderfeld, um das herum eine Umgehungsstrasse gebaut wird. Die Gemeinde bittet Bauer Piepenbrink deshalb, seine zwei quadratischen Felder gegen ein drittes größeres, quadratisches Feld einzutauschen. Sein Sohn, der ebenso wie die Schüler in die neunte Klasse geht, empfiehlt seinem Vater den Tausch. Am Stammtisch unterhält er sich mit zwei anderen Landwirten, Plattfuß und Grossmaul. Die Tochter des Bauern Plattfuß geht auch in die neunte Klasse und empfiehlt auch ihrem Vater seine zwei quadratischen Felder gegen ein grösseres quadratisches Feld einzutauschen. Ebenso will es der Bauer Großmaul machen. An der Wandtafel wird die jeweilige Planskizze der drei Felder aufgehängt. Die Lehrperson hat auf aufwendige Art die Gruppeneinteilung vorbereitet. Nun versuchen die Schülerinnen und Schüler in 6 Gruppen (à 3 bis 4 Lernende) selbständig herauszufinden, ob sich der Feldertausch für den ihnen zugeteilten Bauern wirklich lohnt und weshalb. Dabei arbeiten die Lernenden mit der ihnen bekannten Maßstabsvergrösserung und der Flächenberechnung von Quadraten. In der nächsten Arbeitsphase tauschen sich jeweils zwei Gruppen aus, die den Feldertausch desselben Bauern bearbeitet haben. Anschließend stellen je zwei Schülerinnen und Schüler der Expertengruppen an der Wandtafel vor, wie sie das Problem gelöst haben. Die Lehrperson leitet mit der Frage, warum nun der eine Landwirt ein kleineres, gleichgroßes oder größeres Feld erhält, (obwohl alle kleineren Felder der Bauern gleich gross sind), zur Erarbeitung des Satzes von Pythagoras über. So kommen die Schülerinnen und Schüler im folgenden entwickelnden Lehr- und Lerngespräch einerseits auf die Dreiecke und deren Winkel zu sprechen, die von den Feldern von Großmaul (spitzwinklig), Piepenbrink (rechtwinklig) und Plattfuß (stumpfwinklig) umgeben sind. Andererseits fordert die Lehrperson die Schülerinnen und Schüler auf, eine Regel für das rechtwinklige Dreieck zu finden. Die Lernenden tragen wichtige Details zusammen und vor der Pause formuliert die Lehrperson den Satz des Pythagoras in Worten und hält ihn an der Wandtafel fest. (Projekt)     less

  • Satzgruppe des Pythagoras (A11-P-1118-Lek2)

    Zu Beginn der zweiten Lektion sammelt die Lehrperson Puzzleteile der Gruppenarbeit ein sowie die sechs Protokolle der Expertengruppen und gibt den Auftrag, die Aufgabenstellungen ...    more

    Zu Beginn der zweiten Lektion sammelt die Lehrperson Puzzleteile der Gruppenarbeit ein sowie die sechs Protokolle der Expertengruppen und gibt den Auftrag, die Aufgabenstellungen der verschiedenen Bauern später ins Heft zu kleben. Danach fasst die Lehrperson den Satz des Pythagoras, den sie in der letzten Stunde an die Wandtafel geschrieben hat, nochmals erklärend zusammen. Anhand einer Folie zeigt die Lehrperson den Lernenden, wie man die Seiten in einem rechtwinkligen Dreieck bezeichnet (Hypotenuse und Katheten). Darauf übertragen die Schülerinnen und Schüler Zeichnung, Beschriftung und Erklärungen in ihr Heft. Aufbauend darauf verteilt die Lehrperson ein Arbeitsblatt mit sechs Aufgaben mit je einem Dreieck. Davon sind drei Dreiecke rechtwinklig und zwei Dreiecke haben keinen rechten Winkel. Die Aufgaben werden ähnlich berechnet wie die Aufgaben der letzten Stunde. Dabei werden die einzelnen Flächenquadrate über den kürzeren zwei Seiten berechnet und zusammengezählt und mit dem Flächenquadrat über der längsten Seite verglichen. Rückgreifend auf die Erkenntnisse der letzten Stunde wird zum Schluss der Aufgaben die Frage gestellt, ob den Schülerinnen und Schülern etwas beim Lösen dieser Aufgaben auffalle (Es geht dabei um den Bezug des Satzes von Pythagoras zu rechtwinkligen, stumpfwinkligen und spitzwinkligen Dreiecken). Das Arbeitsblatt wird von den Schülerinnen und Schülern alleine und selbständig bearbeitet. In der Folge werden die gelösten Aufgaben gemeinsam korrigiert. Die Frage, ob den Lernenden dabei etwas auffalle, wird im gemeinsamen Gespräch erörtert. Dabei findet die Klasse heraus, dass das Messen der Längen gewisse Ungenauigkeiten verursacht und dass der Satz des Pythagoras nur bei Dreiecken mit rechtem Winkel angewendet werden kann. Anschließend liest die Lehrperson zur nochmaligen Wiederholung den ausformulierten Satz des Pythagoras von einer Folie ab. Die Lernenden schreiben diesen in ihr Heft ab. Um die Benennung des Satzes zu klären (bisher wurde diese Regel nicht benannt), kommt die Lehrperson auf die Person des Pytharoras zu sprechen und erzählt einiges über seine Geschichte. So führt sie die Bezeichnung Lehrsatz des Pythagoras ein und die Lernenden übernehmen die Überschrift in ihr Heft. Ebenso kleben sie ein Bildchen von einer Pythagorasstatue in ihr Heft. Währenddem gibt die Lehrperson Hausaufgaben für die nächste Mathematikstunde auf. (Projekt)     less

  • Satzgruppe des Pythagoras (A12-P-1119-Lek1)

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die ...    more

    Zu Beginn der Lektion zeigt die Lehrperson am Hellraumprojektor zwei rechtwinklige Dreiecke, die so aneinander gelegt werden, dass ein Rechteck daraus entsteht. Darauf benennt die Klasse die Seiten des Rechtecks und dessen Fläche sowie die Fläche der zwei Dreiecke. Nun leitet die Lehrperson die Schülerinnen und Schüler an, beim nächsten Auftrag genau so vorzugehen. Einmal sollen die Schülerinnen und Schüler von der Gesamtfläche der Figur und einmal von den Teilflächen der Figur ausgehen, um den Flächeninhalt eines Quadrates zu berechnen. Das Quadrat soll von vier kongruenten Dreiecken gebildet werden, wobei das Quadrat nicht notwendig vollständig ausgefüllt sein muss. Nach der zweifachen Berechnung des Flächeninhaltes, sollen die Schülerinnen und Schüler ihre Beobachtungen notieren. In er darauf folgenden Schülerarbeitsphase arbeiten die Schülerinnen und Schüler selbständig entdeckend. Danach werden in der Klasse die Resultate besprochen. Zuerst stellt eine Schülergruppe ihren Lösungsweg am Hellraumprojektor und an der Wandtafel vor, die Klasse und die Lehrperson ergänzen ihren Lösungsweg. Ein zweiter Lösungsweg wird von einer Schülerin am Hellraumprojektor mit Figuren gelegt. Den Lösungsweg schreibt sie an die Wandtafel. Der Lösungsweg wird durch Mitschülerinnen und Mitschüler unter Führung der Lehrperson ergänzt. Auch diese Gleichung wird aufgelöst. Bei beiden Flächengleichsetzungen ergibt sich die Lösung a2 + b2 = c2 . Nun stellt die Lehrperson die Frage, ob diese Formel für alle Dreiecke gelte. Die Lehrperson zeigt nun der Klasse mehrmals die Umwandlung der grafischen Darstellung des algebraischen Beweises zur Darstellung des Satzes von Pythagoras. Dadurch will die Lehrperson den Schülerinnen und Schülern zeigen, dass der Satz nur in rechtwinkligen Dreiecken gilt. Dies formulieren die Schülerinnen und Schüler auch gegen Ende dieser Phase. Darauf zeigt die Lehrperson an der Wandtafel, mit Unterstützung der Klasse, wie man ein rechtwinkliges Dreieck konstruiert. Zum Schluss der Stunde instruiert die Lehrperson die Klasse, wie die Seiten beschriftet werden, und dass die zwei kürzeren Seiten eines rechtwinkligen Dreiecks Katheten und die längere Seite Hypotenuse genannt wird. Danach ist Pause. (Projekt)     less

  • Satzgruppe des Pythagoras (A13-P-1120-Lek1)

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vo...    more

    Zu Beginn dieser Stunde stehen die Schülerinnen und Schüler auf, um die Lehrperson zu begrüssen. Danach lässt die Lehrperson ein Tonband laufen, auf dem sich Pythagoras persönlich vorstellt und seine Erkenntnisse erklärt. Danach bittet die Lehrperson die Klasse, eine Skizze mit der Aussage des Pythagoras an die Wandtafel zu machen. Eine Schülerin skizziert darauf ein rechtwinkliges Dreieck an die Wandtafel, bezeichnet Katheten und Hypotenuse und ergänzt die Skizze des rechtwinkligen Dreiecks zur grafischen Darstellung des Satzes von Pythagoras, indem sie die Flächenquadrate über den Seiten zeichnet. Sie zeigt dabei, dass die kleinen Quadrate zusammen, das grosse Quadrat ergeben. Die Lehrperson beschriftet die Seiten des rechtwinkligen Dreiecks und die Seiten der Flächenquadrate mit a, b und c und die Flächenquadrate mit A1, A2 und A3. Darauf werden die Seiten des rechtwinkligen Dreiecks von einem Schüler mit Hypotenuse und Katheten angeschrieben. Die Lehrperson fordert darauf die Schülerinnen und Schüler auf, nun den Satz des Pythagoras mit den an die Wandtafel geschriebenen Bezeichnungen zu formulieren. Ein Schüler schreibt unter die grafische Darstellung A1+ A2= A3. Mit der Aufforderung der Lehrperson den Satz des Pythagoras mit den Bezeichnungen der Seiten anzuschreiben, notiert ein Schüler die nicht ganz korrekte Formel an die Wandtafel, die von der Klasse zu a2+ b2= c2 korrigiert wird. Danach erzählt die Lehrperson Geschichtliches zu Beweisführungen des Satzes und über die Wichtigkeit und Wirkung von Pythagoras bis hin zur Briefmarke und zur Werbung von Rittersport in unserer Zeit. Dazu befestigt die Lehrperson ein Plakat, auf dem der Satz des Pythagoras mit Rittersportschokolade dargestellt ist. In der Folge leitet die Lehrperson zum Zerlegungsbeweis über. Dazu leitet sie die Schülerinnen und Schüler an, aus zehn Figuren (Puzzleteile) und einem zusätzlichen rechtwinkligen Dreieck, die grafische Darstellung des Satzes von Pythagoras nachzubilden. Diese Arbeitsphase ist die Grundlage, für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler arbeiten dabei alleine. Der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Die Schülerarbeitsphase wird nach einer Weile von der Lehrperson unterbrochen und ein Schüler zeigt die Puzzlekombination am Helllramprojektor vor. An dieser Darstellung können sich die anderen Schülerinnen und Schüler orientieren. Ein zweiter Schüler zeichnet zur visuellen Unterstützung die Linien der Puzzleteile auf den Katheten- und dem Hypotenusenquadrat, einer vorgefertigten Skizze an der Wandtafel ein. Darauf werden die alten Puzzleteile eingesammelt und neue verteilt. Die Lehrperson erteilt einen neuen Auftrag an die Klasse. Dabei sollen die Schülerinnen und Schüler das Hypotenusen- und die Kathetenquadrate mit anderen Puzzleteilen zusammensetzten, um die grafische Darstellung des Satzes von Pythagoras zu bilden. Auch diese Arbeitsphase ist die Grundlage für die Beweisführung in der zweiten Lektion. Die Schülerinnen und Schüler bearbeiten den Auftrag alleine und der Arbeitsinhalt baut auf bereits bekanntem Wissen auf. Zur Kontrolle werden danach im öffentlichen Unterricht die Katheten- und Hypotenusenquadrate auf dem Hellraumprojektor (mit den Puzzleteilen) hingelegt. Dabei lösen sich verschiedene Schülerinnen und Schüler ab. Zum Schluss der Stunde überträgt ein Schüler zur visuellen Unterstützung die Linien der Puzzleteile auf eine zweite grafische Darstellung an der Wandtafel. (Projekt)     less

  • Satzgruppe des Pythagoras (A15-P-1205-Lek1)

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. De...    more

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. Der Bauer Albrecht soll dabei zwei seiner Felder gegen ein drittes tauschen, da die Bundesstrasse auf seinem Land vorbei führen soll. Die Klasse bespricht die Aufgabenstellung und die Lehrperson zeigt dazu die grafische Darstellung des Satzes von Pythagoras am Hellraumprojektor. In der Klasse wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs besprochen, ob dieser Feldertausch für den Bauer Albrecht lohnend sein kann. Ein Schüler schlägt vor, die Seiten der Quadrate zu messen und sie jeweils mal zu rechnen, um so die Fläche der einzelnen Quadrate zu erhalten. Die Lehrperson schreibt die Resultate an die Wandtafel. Die Lehrperson erzählt darauf der Klasse, dass der Bauer Albrecht zwei anderen Bauern von seinem Feldertausch berichtet. Die zwei anderen Bauern schreiben darauf dem Bürgermeister, denn sie wollen ebenso ihre Felder tauschen. Nun gibt die Lehrperson den Schülerinnen und Schülern den Auftrag, als Bürgermeister zu entscheiden, ob sie die Felder der zwei anderen Bauern eintauschen würden oder nicht. Die Schülerinnen und Schüler arbeiten zu zweit selbständig explorierend. Danach werden im öffentlichen Unterricht die Ergebnisse ausgetauscht. Die Klasse kommt darauf, dass die Gemeinde in einem Fall (stumpfwinkliges Dreieck - Verlängerung der Seite) profitieren würde und im anderen Fall (spitzwinkliges Dreieck - Verkürzung der Seite) ablehnen müssten, weil das nicht rentabel wäre. Die Lehrperson will darauf von der Klasse wissen, warum es Unterschiede gibt, obwohl die Grundflächen der zwei kleinen Quadrate identisch sind. In der Folge nennen die Schülerinnen und Schüler den Winkel, der ausschlaggebend ist für die Seite des großen Quadrates. Später wird der Satz des Pythagoras und der rechte Winkel von einem Schüler genannt. Darauf verteilt die Lehrperson den Schülerinnen und Schülern jeweils ein Blatt, an dessen Ecken die Schülerinnen und Schüler je ein Eselsohr machen sollen. So soll die Klasse überprüfen, ob die Behauptung stimmt, dass der Satz des Pythagoras nur in rechtwinkligen Dreiecken gilt. Die Schülerinnen und Schüler arbeiten alleine. Die Berechnung der Quadratflächen von den Seiten eines Dreiecks ist den Schülerinnen und Schüler bekannt von dieser Lektion. Die Klasse arbeitet an diesem Auftrag, bis es in die Pause klingelt. (Projekt)     less

  • Satzgruppe des Pythagoras (A16-P-1208-Lek1)

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll ein...    more

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll eine Umfahrungsstraße gebaut werden. Da zwei quadratische Felder des Bauern Piepenbrink genau in der Bebauungszone liegen, will ihm die Gemeinde dafür ein einziges größeres quadratisches Feld überlassen. Die Lehrperson legt eine Folie auf den Hellraumprojektor, auf der zu sehen ist, wie die Felder liegen: Sie bilden die Pythagorasfigur. Eine Schülerin misst und berechnet die Quadratflächen und stellt fest, dass die kleinen Quadrate miteinander den selben Flächeninhalt haben, wie das große. Dann liest die Lehrperson weiter aus der Geschichte vor: Bauer Piepenbrink ist zufrieden mit dem Tausch und erzählt davon am Stammtisch. Seine beiden Kollegen, Bauer Plattfuss und Bauer Grossmaul, besitzen ähnliche quadratische Felder und wollen die auch gegen ein einziges großes Feld eintauschen. Nun sehen die Schülerinnen und Schüler an der Leinwand zuerst die Felder von Bauer Plattfuss: Die drei Quadrate sind um ein stumpfwinkliges Dreieck angeordnet. Wieder werden die Flächen der Quadrate berechnet und festgestellt, dass die Fläche des großen Quadrats größer ist als die der beiden kleinen Quadrate zusammen. Auch die Felder von Bauer Grossmaul werden vermessen und ihre Flächen berechnet. Da bei ihm die Felder um ein spitzwinkliges Dreieck angeordnet sind, ist die Fläche der beiden kleineren Quadrate zusammen natürlich größer als die des großen Quadrats. Die Lehrperson teilt die drei Pläne an die Schülerinnen und Schüler aus, die nun in Gruppen darüber beraten sollen, woran es liegt, dass sich beim einen Bauer der Tausch lohnt und beim andern nicht, denn bis jetzt haben sich die Schülerinnen und Schüler ausschließlich mit den Quadraten und nicht mit den eingeschlossenen Dreiecken beschäftigt. Nach angeregten Diskussionen sammelt die Lehrperson die Erkenntnisse der Schülerinnen und Schüler im Plenum. Den meisten Schülerinnen und Schüler ist aufgefallen, dass das Dreieck zwischen den Feldern des Bauern Piepenbrink rechtwinklig ist und dass darum die Flächen der beiden kleinen Feldern zusammen gleich groß sein könnten, wie die Fläche des angrenzenden großen quadratischen Feldes. Um diese Erkenntnis zu überprüfen, messen und vergleichen die Schülerinnen und Schüler selbständig verschiedene rechtwinklige Dreiecke, die auf einem von der Lehrperson ausgeteilten Blatt abgebildet sind. Vor der Pause bespricht die Lehrperson mit der Klasse, ob durch das Messen und Berechnen die Erkenntnisse, nämlich dass die Quadrate über den Katheten zusammen gleich groß sind, wie das Hypotenusenquadrat, bzw. dass wenn eine Quadratfläche die selbe Fläche hat, wie die Flächen zwei anderer Quadrate zusammen, die eingeschlossene Figur ein rechtwinkliges Dreieck sein muss, die aus der Piepnbrink-Geschichte hervorgegangen sind, bekräftigt wurden und fasst die Erkenntnis, dass also in einem rechtwinkligen Dreieck die Summe der Flächen der Kathetenquadraten gleich der Flächen des Hypotenusenquadrats ist, noch einmal zusammen. (Projekt)    less

  • Satzgruppe des Pythagoras (A17-P-1218-Lek2)

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werte...    more

    Nachdem kurz die Konstruktion eines rechtwinkligen Dreiecks mit dem Thaleskreis ins Gedächtnis gerufen wurde, füllen die Schülerinnen und Schüler selbständig eine Tabelle mit den Werten selber konstruierter rechtwinkliger Dreiecke aus. In der Tabelle werden alle drei Seiten des konstruierten Dreiecks, die Hyotenusenabschnitte und die Höhe eingetragen sowie das Produkt der Hypotenusenabschnitte und das Quadrat der Höhe. Immer einige Schülerinnen und Schüler konstruieren Dreiecke mit denselben Angaben, die Hypothenuse ist für alle Schülerinnen und Schüler gleich, der erste Hypotenusenabschnitt wächst in Zentimeterschritten von einem auf acht Zentimeter. Nachdem die Resultate aller Schülerinnen und Schülern in der Tabelle am Hellraumprojektor gesammelt wurden, kommt die Klasse auf die Flächengleichheit des Rechtecks, gebildet aus den Hypotenusenabschnitten, und dem Höhenquadrat zu sprechen. Hypothetisch wird der Höhensatz formuliert. Anschließend ergänzen die Schülerinnen und Schüler die Tabelle in ihren Theorieheften selbständig. Durch Aufstellen von Verhältnisgleichungen zwischen den durch die Höhe des rechtwinkligen Dreiecks entstandenen Teildreiecke beweist die Klasse die Richtigkeit des Höhensatzes an der Wandtafel. Der Beweis wird von den Schülerinnen und Schülern in ihr Heft übernommen. Anschließend wird der Höhensatz in der Klasse in Worten ausformuliert und zum Beweis dazugeschrieben. Nun wird der Satz für rechtwinklige Dreiecke mit unüblichen Bezeichnungen verwendet. Danach berechnen die Schülerinnen und Schüler selbständig die Höhen von zwei rechtwinkligen Dreiecken, von denen die Hypotenusenabschnitte bekannt sind. Nachdem diese Berechnungen in der Klasse kontrolliert wurden, haben die Schülerinnen und Schüler Zeit, selbständig an den Hefteinträgen, die sie während dieser Doppellektion nicht fertig machen konnten, zu arbeiten. (Projekt)    less

  • Satzgruppe des Pythagoras (A18-P-1222-Lek1)

    Nach einigen organisatorischen Informationen ruft sich die Klasse ein Verfahren ins Gedächtnis, mit dem sie gelernt hat die Wurzel aus zwei zu konstruieren. Anschließend sollen die Sc...    more

    Nach einigen organisatorischen Informationen ruft sich die Klasse ein Verfahren ins Gedächtnis, mit dem sie gelernt hat die Wurzel aus zwei zu konstruieren. Anschließend sollen die Schülerinnen und Schüler zu zweit versuchen die Wurzel aus drei zu konstruieren. Nach fünf Minuten präsentieren die Schülerinnen und Schüler ihre Lösungsvorschläge an der Wandtafel. Wie erwartet, kam niemand auf einen befriedigenden Lösungsweg. Um ein Verfahren zu erarbeiten, wie also die Wurzel aus einer beliebigen Zahl konstruiert werden kann, verwandelt die Lehrperson an der Wandtafel als erstes ein Quadrat in ein Rechteck, von dem eine Seite gegeben ist. Dabei bezieht sie die Schülerinnen und Schüler in ein Lehr-Lerngespräch ein. Die Lehrperson unterbricht die Konstruktion, nachdem sie das Quadrat in ein Parallelogramm umgewandelt hat, damit die Schülerinnen und Schüler die Konstruktion so weit in ihr Theorieheft übernehmen können. Anschließend wird die Konstruktion an der Wandtafel zu Ende geführt. Als letztes werden die Flächen des Ausgangsquadrates und des entstandenen Rechtecks berechnet und verglichen. Nun will die Lehrperson auf die gleiche Weise ein Rechteck in ein Quadrat verwandeln, unterbricht den Unterricht aber für eine kleine Pause. (Projekt)     less

  • Satzgruppe des Pythagoras (A20-P-1225-Lek1)

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbr...    more

    Nach einigen organisatorischen Informationen erzählt die Lehrperson die Geschichte vom Bauern Piepenbrink: Wegen dem Bau einer Umfahrungsstraße bietet die Gemeinde dem Bauern Piepenbrink einen Landtausch an. Zwei kleine quadratische Felder sollen in ein angrenzendes großes quadratisches Feld umgetauscht werden. Der Bauer weiß nicht recht, ob er dem Handel zustimmen soll, doch seine Nichte berechnet die Flächen der Felder und rät ihrem Onkel auf den Tausch einzusteigen. Von dem Handel erzählt Bauer Piepenbrink am Stammtisch. Seine zwei Kollegen, Bauer Plattfuß und Bauer Großmaul, wollen daraufhin auch zwei kleine quadratische Felder in ein großes quadratisches Feld umtauschen. Die Lehrperson teilt die Pläne, wie die Felder der Bauern liegen an die Schüler aus. Jede Gruppe bearbeitet eine Felderkombination. Sie sollen herausfinden, ob sich der Tausch für "ihren" Bauern lohnt. Bei Bauer Piebenbrink bilden die Felderquadrate, die an den Ecken zusammenstossen in der Mitte einen Leerraum in Form eines rechtwinkligen Dreiecks, bei Bauer Plattfuß ein stumpfwinkliges, bei Bauer Großmaul ein spitzwinkliges Dreieck. Die Schülergruppen präsentieren ihre Erkenntnisse. Sie haben festgestellt, dass bei Bauer Piepenbrink die Flächen der kleinen Quadrate zusammen die Fläche des großen Quadrates ergibt, bei Bauer Plattfuss das große Quadrat größer und bei Bauer Großmaul kleiner, als die Flächen der beiden kleinen Quadrate zusammen. Ein Schüler, der Bauer Piepenbrinks Felder bearbeitet hat, vermutet, dass die Flächengleichheit mit dem rechtwinkligen Dreieck zwischen den Feldern zu tun hat. So kommt die ganze Klasse auf die Dreiecke zwischen den Feldern zu sprechen, und stellt fest, dass bei den Quadraten, die um das rechtwinklige Dreieck angeordnet sind, die Flächen der beiden kleineren zusammen die Fläche des größeren ergeben. Da nun scheinbar oft von rechtwinkligen Dreiecken gesprochen wird, führt die Lehrperson die Bezeichnungen im rechtwinkligen Dreieck ein. Mit den neu erlernten Begriffen versuchen die Schülerinnen und Schüler im Plenum ihre Erkenntnisse bezüglich der Quadrate über den Dreiecksseiten in einem Satz zu formulieren. Schließlich wird eine befriedigende Formulierung gefunden. Diese schreiben die Schülerinnen und Schüler in ihre Theorieblätter. Anschließend überprüfen sie den behaupteten Satz selbständig an einigen Übungsaufgaben aus dem Buch. (Projekt)    less

  • Satzgruppe des Pythagoras (A20-P-1225-Lek2)

    Nach der Pause haben die Schülerinnen und Schüler noch etwas Zeit, um an den Übungsaufgaben weiter zu rechnen. Anschließend werden diese besprochen. Da es sich bei dem Satz immer noc...    more

    Nach der Pause haben die Schülerinnen und Schüler noch etwas Zeit, um an den Übungsaufgaben weiter zu rechnen. Anschließend werden diese besprochen. Da es sich bei dem Satz immer noch um eine Behauptung handelt, soll er nun bewiesen werden. Als erstes wird die Pythagorasfigur, der das Hypotenusenquadrat abgeschnitten wurde mit drei rechtwinkligen Dreiecken zu einem Quadrat, dessen Seite aus der Summe der beiden Katheten besteht, ergänzt. Die Schülerinnen und Schüler zeigen unter der Leitung der Lehrperson, dass es sich bei der neuen Figur wirklich um ein Quadrat handelt. Ebenso geht die Klasse mit der Pythagorasfigur vor, der die beiden Kathetenquadrate abgeschnitten wurden. Dann wird in der Klasse gezeigt, dass die beiden neuen Quadrate gleich groß sind, und also die Summe der Kathetenquadrate gleich dem Hypothenusenquadrat ist. Anschließend formulieren die Schülerinnen und Schüler mit Hilfe der Lehrperson einen Theorieeintrag, dazu kleben sie die Skizzen, die während der Entwicklung des Beweises entstanden sind. Vor dem Ende der Lektion gib die Lehrperson die Hausaufgaben bekannt, dabei handelt es sich um einschrittige Seitenberechnungen im rechtwinkligen Dreieck. (Projekt)    less

  • Satzgruppe des Pythagoras (B06-P-2106-Lek1)

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreibe...    more

    Die Lektion beginnt mit einigen organisatorischen Angaben. Danach diktiert die Lehrperson den Schülerinnen und Schülern einen Aufgabenkatalog, den diese in ihr Theorieheft schreiben und die aufgeschriebenen Aufträge dann auch ausführen: Sie sollen sechs Quadrate, die die Seitenlängen von zwei pythagoräischen Zahlentripeln aufweisen, ausschneiden, die zusammengehörenden zu Pythagorasfiguren zusammenlegen und ihre Beobachtungen dazu schriftlich festhalten. Während die Schülerinnen und Schüler die Aufträge zur Exploration des Satzes von Pythagoras der Reihe nach ausführen, erklärt die Lehrperson, was mit „zu einem Dreieck zusammenlegen“ gemeint ist, eben die Pythagorasfigur legen. Schließlich geht die Lehrperson den Aufgabenkatalog Punkt für Punkt durch, die Schüler geben ihre Beobachtungen an die Klasse weiter. Da der Satz des Pythagoras bei einigen Schülern schon bekannt ist, kommt dieser als Beobachtung bald zur Sprache. An dieser Stelle erklärt die Lehrperson, was der Satz des Pythagoras ist. Danach wird ein weiterer Punkt aus dem Katalog besprochen, was die Lehrperson dazu verleitet, der Klasse etwas über den Mathematiker und Philosophen Pythagoras aus dem Lexikon vorzulesen. Schließlich wird der letzte Punkt besprochen: Weitere Dreiecke suchen, von denen die Summe zweier Seitenquadrate das Quadrat der dritten ergibt. Danach sollen die Schüler selbständig einen Eintrag in ihr Theorieheft machen. Bevor der Film zu Ende ist, beginnt die Lehrperson den Beweis an Hand des Kathetensatzes vorzuzeigen. (Projekt)    less

  • Satzgruppe des Pythagoras (B12-P-2112-Lek2)

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse st...    more

    In der zweiten Lektion arbeiten die Schülerinnen und Schüler in Partnerarbeit, je an einem der drei Aufträge selbständig entdeckend weiter. Danach findet der Austausch in der Klasse statt. Neue Gedanken, Erkenntnisse und Lösungsversuche zu den einzelnen Aufträgen werden von einzelnen Schülerinnen und Schülern der Klasse mitgeteilt. Danach legen die Schülerinnen und Schüler ihre Arbeitsblätter an den dritten, von ihnen bisher unbearbeiteten Posten, den sie nach einer fünfminütigen Pause bearbeiten werden (im Video ist die Pause als Schnitt bei 00:14:47 erkennbar). Nach der Pause arbeiten die Schülerinnen und Schüler wiederum in Partnerarbeit selbständig entdeckend am dritten und letzten, von ihnen noch nicht bearbeiteten, Auftrag. Die Schülerinnen und Schüler formulieren danach in der Gruppe (zwei bis drei Partnerarbeitsgruppen zusammen) ihre Erkentnisse zur Aufgabe möglichst kurz und prägnant und bestimmen eine Schülerin/ einen Schüler, die/ der dies der ganzen Klasse am Hellraumprojektor vorträgt. Die Lehrperson gibt nun einen kurzen Überblick zum weiteren Stundenverlauf: Die Gruppen teilen ihre Überlegungen zu den drei Aufträgen vor der Klasse vor. Als erstes tragen zwei Schüler ihre Erkenntnisse zum Seiltrick der Ägypter vor und bestätigen dabei die Behauptung a2+b2=c2. Danach erzählt die Lehrperson kurz, wozu die Ägypter die Konstruktion des rechten Winkels benötigten. Darauf äußert sich ein Schüler am Hellraumprojektor zur Darstellung des Ergänzungsbeweises und rechnet vor, weshalb hier die Behauptung a2+b2=c2 stimmt. In der Folge werden die Erkenntnisse zum Parkett von zwei Schülerinnen geäußert. Sie bestätigen, dass das größte Quadrat gleich groß ist, wie die zwei kleineren zusammen. Zum Schluss der Doppellektion klärt die Lehrperson organisatorische Fragen bezüglich der nächsten Stunden und der Hausaufgaben. (Projekt)    less

  • Satzgruppe des Pythagoras (B13-P-2113-Lek1)

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nenne...    more

    Die Lehrperson steigt in die erste Lektion dieser Pythagorasreihe mit einer Wiederholung geometrischer Orte ein. Mit Hilfe eines fragend- entwickelnden Lehr- und Lerngespräches nennen die Schülerinnen und Schüler den Kreis, die Mittelsenkrechte, die Mittelparalelle, den Thaleskreis und die Winkelhalbierende als geometrische Orte. Darauf erteilt die Lehrperson den Schülerinnen und Schülern einen Auftrag, bei dem sie ein rechtwinkliges Dreieck zeichnen sollen, indem sie den Thaleskreis über der Seite c konstruieren. Danach sollen sie die Seiten a, b und über den drei Seiten die entsprechenden Flächenquadrate zeichnen. Da der Auftrag auf Häuschenpapier gezeichnet wird, sollen die Schülerinnen und Schüler danach die Häuschen der einzelnen Flächenquadrate zählen und miteinander vergleichen. Schlussfolgerungen sollen dabei an der Tafel notiert werden. Bevor die Schülerinnen und Schüler zu arbeiten beginnen, werden in einem entwickelnden Lehr- und Lerngespräch die Seitenbezeichnungen (Hypotenuse und Katheten) in einem rechtwinkligen Dreieck erarbeitet. Danach arbeiten die Schülerinnen und Schüler zu zweit an dem zuvor erteilten Auftrag. Bei der Auswertung erklärt ein Schüler am Hellraumprojektor, wie er die Flächen berechnet hat. Eine Schülerin präsentiert die Schlussfolgerung, dass die Summe der Flächenquadrate über den Katheten gleich groß ist, wie das Flächenquadrat über der Hypotenuse. Während der Stillarbeitsphase wurden von den Schülerinnen und Schülern die Formel a2 + b2 = c2 und deren Ableitungen an der Wandtafel notiert. Nun überprüft die Klasse die Formel a2 + b2 = c2 mit dem Taschenrechner und befindet sie als richtig. Mit der Unterstützung der Lehrperson und der Gleichungslehre, werden auch die Umkehrungen der Formel als richtig anerkannt. Zum Schluss der Lektion gibt die Lehrperson die Hausaufgaben bekannt. (Projekt)    less

  • Satzgruppe des Pythagoras (B18-P-2203-Lek2)

    Nachdem die Lehrperson das Thema und den Ablauf der nächsten zwei Lektionen bekannt gegeben hat, zeigt sie, was bei den Hausaufgaben hätte herauskommen müssen: a2 + b2= c2. Die Schüler...    more

    Nachdem die Lehrperson das Thema und den Ablauf der nächsten zwei Lektionen bekannt gegeben hat, zeigt sie, was bei den Hausaufgaben hätte herauskommen müssen: a2 + b2= c2. Die Schülerinnen und Schüler überprüfen, ob das auch für ihre Quadrate zutrifft. Bei allen sind die Flächen der beiden kleineren Quadrate zusammen etwa so groß, wie die Fläche des großen. Die Lehrperson hat die ausgeschnittenen Quadrate wieder mitgebracht und zeigt den Schülern einen ersten improvisierten Beweis, das diese Beobachtung stimmt. Sie wägt alle drei Haufen mit einer Briefwaage und tatsächlich sind die beiden Haufen mit den kleineren Quadraten fast gleich schwer, wie der Haufen mit den grossen Quadraten. Anschließend trägt die Lehrperson an der Moltonwand den Zerlegungsbeweis vor. Die Lehrperson stellt die Frage, wozu denn nun die Erkenntnis, dass in einem rechtwinkligen Dreieck die Quadrate über den beiden kürzeren Seiten die gleiche Fläche haben, wie das Quadrat über der längsten Seite, gebraucht werden könne und leitet so zum Übungsteil der Unterrichtsreihe über. Eine erste einschrittige Übungsaufgabe wird in der Klasse berechnet. Danach gibt die Lehrperson eine Vorgehensweise vor, wie solche Aufgaben zu lösen sind. Eine weitere einschrittige Übungsaufgabe lösen die Schülerinnen und Schüler selbständig, anschließend wird der Lösungsweg in der Klasse besprochen. Nun teilt die Lehrperson ein Arbeitsblatt aus, auf dem die Schülerinnen und Schüler gesuchte Seiten in verschiedenen geometrischen Figuren berechnen müssen. Bis zur Pause arbeiten die Schüler und Schülerinnen an diesen Aufgaben. (Projekt)     less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek1)

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite ein...    more

    Nach einigen organisatorischen Angaben beginnen die Schülerinnen und Schüler mit einer Aufgabe, anhand der sie den Satz des Pythagoras selbständig entdecken sollen: Über der Seite eines Quadrates wurde ein gleichseitiges Dreieck gezeichnet. Die Schülerinnen und Schüler sollen nun selbständig untersuchen, was mit den Quadraten, die sich über den anderen Dreiecksseiten errichten lassen, geschieht, wenn die Spitze des Dreiecks entlang der Mittlesenkrechten zur Grundlinie wandert. Es wird festgestellt, dass die Quadratflächen über den Schenkeln in der Ausgangssituation zusammen doppelt so groß sind, wenn sich die Spitze auf der Grundlinie befindet und halb so groß sind wie das Quadrat über der Grundlinie. Auf Grund dieser Erkenntnis versuchen die Schülerinnen und Schüler als nächstes selbständig herauszufinden wie das Dreieck aussehen muss, wenn die Quadratflächen über den Schenkeln zusammen genau gleich groß sind, wie die Fläche des Quadrates über der Grundlinie. Das Ergebnis, dass es sich in diesem speziellen Fall um ein rechtwinkliges Dreieck handeln muss, erreichen die Schülerinnen und Schüler auf unterschiedliche Weise. Ein Schüler und eine Schülerin stellen ihre Methoden vor: Der Schüler hat beim ersten Auftrag die Spitze regelmäßig um fünf Millimeter gesenkt. So konnte er nun feststellen, zwischen welchen beiden seiner Konstruktionen der gesuchte Spezialfall zu finden sei. Ihm ist aufgefallen, dass es sich bei den beiden Dreiecken um ein stumpfwinkliges und ein spitzwinkliges Dreieck handelt. So nahm er an, dass der Spezialfall das rechtwinklige Dreieck ist. Die Schülerin stellt eine Methode vor, die die meisten Schülerinnen und Schüler zur Lösung dieser Aufgabe entdeckt haben. Sie berechnet an Hand der Fläche des Basisquadrates die Seitenlänge des gesuchten Dreiecks und kann so das gesuchte Dreieck konstruieren. Auch dieses scheint natürlich rechtwinklig zu sein. (Projekt)    less

  • Satzgruppe des Pythagoras (B20-P-2205-Lek3)

    Die Lektion beginnt mit einigen organisatorischen Angaben. Ein Arbeitsplan, auf dem der ungefähre Inhalt der nächsten zwei Lektionen beschrieben ist, wird verteilt. Gemäß dieses Arbeitsp...    more

    Die Lektion beginnt mit einigen organisatorischen Angaben. Ein Arbeitsplan, auf dem der ungefähre Inhalt der nächsten zwei Lektionen beschrieben ist, wird verteilt. Gemäß dieses Arbeitsplans repetieren die Schülerinnen und Schüler die Aussage des Satzes von Pythagoras. Dazu skizziert die Lehrperson die Pythagorasfigur an die Wandtafel. Zusammen mit dem Satz übernehmen sie die Schülerinnen und Schüler auf ein Theorieblatt. An Hand der skizzierten Pythagorasfigur kommt die Lehrperson auf das pythagoräische Zahlentripel zu sprechen. Wie auf dem Arbeitsplan vorgegeben beginnt die Klasse nun mit Übungsaufgaben. Zuerst werden zwei einschrittige Aufgaben im Plenum gelöst, weitere zwei Aufgaben lösen die Schülerinnen und Schüler selbständig. Einzelne Schüler lösen die Aufgaben an der Wandtafel. An Hand dieser Ausführungen werden die selbständig gelösten Aufgaben besprochen. Danach führt die Lehrperson mit einer weiteren Übungsaufgabe die Umkehrungen des Satzes von Pythagoras ein, anschließend werden bis zum Ende der Lektion weitere einschrittige Übungsaufgaben gelöst. (Projekt)    less


     1     
Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education