DE | EN
Logo fdz-Bildung
Projekt/Study Survey
Downloads and Links
dauerhaft abrufbar über die DOI:
10.7477/1:1:1
[Videos, Transkripte, Kodierungen, Beschreibungen]
Transkriptionsmanual-Video_Pythagoras.pdf  
[Transkriptionsmanual] 64.14 kB Details

Classroom observation (data): Pythagorasmodul

Die Datenerhebung der videogestützten Unterrichtsstudie gliederte sich in vier Module, die im Laufe des Schuljahres 2002/03 in 20 deutschen Klassen der 9. Jahrgangsstufe und in 20 Schweizer Klassen der 8. Jahrgangsstufe durchgeführt wurden: Eingangsbefragung, Pythagorasmodul, Textaufgabenmodul und Ausgangsbefragung. Das Pythagorasmodul bestand aus der Videoaufzeichnung von drei aufeinander folgenden Lektionen zur Einführung in die Satzgruppe des Pythagoras. Neben der Standardisierung des Inhalts wurde von den Lehrpersonen zusätzlich die Verwendung eines Beweises verlangt, ansonsten waren sie frei in der didaktischen Gestaltung ihres Unterrichts, sollten jedoch einen möglichst normalen, alltäglichen Unterricht zeigen. Direkt im Anschluss an die Videografierung der Unterrichtseinheit wurden die Schüler zu den Unterrichtsstunden und ihrem Lernverhalten befragt. Im Umfeld der videografierten Pythagorasstunden wurden darüber hinaus die auf die Satzgruppe des Pythagoras bezogenen Kompetenzen der Schüler in einem Vortest und Nachtest erfasst. Außerdem wurden im Rahmen des Moduls mit den Lehrpersonen Interviews zur Reflexion der Unterrichtseinheiten und zur Erfassung von subjektiven Theorien durchgeführt. (DIPF/Projekt)    less

StudyPythagoras - Videogestützte Unterrichtsstudie

LeaderKlieme, Eckhard; Reusser, Kurt; Pauli, Christine

Persistent IdentifierDOI: 10.7477/1:1:1

CitationKlieme, E.; Pauli, C.; Reusser, K. (2014). Unterrichtsqualität und mathematisches Verständnis in verschiedenen Unterrichtskulturen - Unterrichtsbeobachtung: Pythagorasmodul (Pythagoras) [Datenkollektion: Version 1.0]. Datenerhebung 2002-2003. Frankfurt am Main: Forschungsdatenzentrum Bildung am DIPF. http://dx.doi.org/10.7477/1:1:1

Time Period of Data Collection2002 - 2003

Collection coverage (Geographic)Germany; Schweiz

Collection modeObservation: Field Observation (Non-participant)
Specification: Videographie ; Nicht-teilnehmende Beobachtung

Specification of Survey UnitsLehrkräfte; Schüler

Resource type Qualitative, non-standardized or low-standardized data material
(Videos, Transkripte, Kodierungen, Beschreibungen)

language(s)German; Swiss German

NotesZur Erhebung des Pythagorasmoduls stehen folgende Materialien zur Verfügung: Videoaufzeichnungen von beobachteten Unterrichtssituationen (in einigen Fällen steht hierzu neben der Lehrerkamera auch noch zusätzlich die Schülerkamera zur Verfügung), Transkripte der Videoaufnahmen, Fotografien der in den Unterichtseinheiten verwendeten Tafelbilder, Lektionsbeschreibungen (narrative Kurzbeschreibung des Unterrichts in den videografierten Lektionen) sowie Lektionsübersichten (tabellarische Darstellung des Ablaufs der Lektion im zeitlichen Verlauf). Die Audioaufnahmen der Interviews mit Lehrkräften, welche sich auf das Pythgorasmodul beziehen, sind in einer eigenen Erhebung erschlossen, können aber auch über die Aufzeichnungseinheiten der jeweiligen Pythagoraslektion direkt angesteuert werden.

AvailabilityDie audiovisuellen Daten und die nicht anonymisierten Transkripte sind aus Datenschutzgründen nur für registrierte Nutzer auf Antrag zugänglich. Die anonymisierten Transkripte sowie die Tafelbilder sind nach der Registrierung einsehbar. Die Lektionsbeschreibungen (textuelle Beschreibung der Unterrichtssituation) und Lektionsübersichten (Kodierung der Unterrichtssituation) sind frei verfügbar. Es gelten die allgemeinen Nutzungsbedingungen des Anbieters.

Archiving research data centreResearch Data Centre for Education (FDZ Bildung)

CopyrightKlieme, Eckhard
Pauli, Christine
Reusser, Kurt

Publication date2014-06-12

Surveys of this studyQuestionnaire survey (Questionnaire scales): Zwischenbefragung (Pythagoras)
Interview (data): Pythagoras
Questionnaire survey (Questionnaire scales): Eingangsbefragung (Pythagoras)
Questionnaire survey (Questionnaire scales): Abschlussbefragung (Pythagoras)
Classroom observation (data): Textaufgabenmodul (Pythagoras)

Downloads and Links
dauerhaft abrufbar über die DOI:
10.7477/1:1:1
[Videos, Transkripte, Kodierungen, Beschreibungen]
Transkriptionsmanual-Video_Pythagoras.pdf  
[Transkriptionsmanual] 64.14 kB Details
Refine your search:
     1     

Recorded units of survey

Request: THEORIE (Filter: Schlagwörter)
UEBUNGSAUFGABE (Filter: Schlagwörter)
EXPLORATION (Filter: Schlagwörter)

Number of results: 6
  • Satzgruppe des Pythagoras (A09-P-1114-Lek1)

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des...    more

    Die Lektion beginnt mit disziplinarischen Hinweisen und einigen organisatorischen Angaben zur Sitzordnung. Die Lehrperson führt ihr problemorientiertes Vorgehen zur Entwicklung des Satzes von Pythagoras damit ein, dass sie den Schülerinnen und Schülern sagt, dass sie heute ein Phänomen kennenlernen, mit dem sich die Ägypter schon beschäftigt haben. Anhand eines Bildes von ägyptischen Pyramiden sollen die Schülerinnen und Schüler in der Klasse überlegen, wie im Wüstensand die Grundfläche der Pyramide wohl rechtwinklig abgesteckt werden könnte. Die Schülerinnen und Schüler äußern verschiedene, jedoch unbrauchbare Ideen zur Lösung dieses Problems. Schließlich teilt die Lehrperson vorbereitete Knotenschnüre an Schülergruppen aus. In diesen Gruppen sollen die Schülerinnen und Schüler nun selbständig herausfinden, wie mit Hilfe einer solchen Schnur ein rechter Winkel gelegt werden kann. Dank anregender Tipps der Lehrperson gelingt es schließlich allen Gruppen ein rechtwinkliges Dreieck mit den Seitenverhältnissen drei, vier, fünf zu legen. Anschließend wird die Lösung kurz an der Wandtafel dargestellt. Nachdem die Begriffe Kathete und Hypotenuse wieder ins Gedächtnis gerufen wurden, versucht die Klasse hinter den Zusammenhang der drei Zahlen drei, vier und fünf zu kommen. Im Plenum werden verschiedene Rechenoperationen getestet, auch das Quadrieren. Dabei wird die These aufgestellt, dass die Summe der Flächen der beiden Kathetenquadrate die Fläche des Hypotenusenquadrates ergibt. Zu dieser Annahme sollen die Schülerinnen und Schüler bis zur Pause selbständig weitere ganzzahlige Beispiele suchen. (Projekt)    less

  • Satzgruppe des Pythagoras (A13-P-1120-Lek2)

    Zu Beginn dieser Stunde versorgen die Schülerinnen und Schüler die grünen Puzzleteile in ihre Umschläge und ein Schüler sammelt sie ein. An der Wandtafel sind die zwei grafischen Dar...    more

    Zu Beginn dieser Stunde versorgen die Schülerinnen und Schüler die grünen Puzzleteile in ihre Umschläge und ein Schüler sammelt sie ein. An der Wandtafel sind die zwei grafischen Darstellungen des Satzes von Pythagoras mit den Einteilungen der Puzzleteile gezeichnet. Sie wurden letzte Stunde erarbeitet und gelten als Grundlage zur Beweisführung des Zerlegungsbeweises. Nun machen die Schülerinnen und Schüler in einer öffentlichen Phase mehrere Vorschläge, wie anhand dieser Darstellungen zu beweisen wäre, dass a2 + b2 = c2 ist. Dabei zeigt ein Schüler an der Wandtafel, dass sowohl die Einzelteile von a2, als auch b2 in Puzzleteilen von c2 enthalten sind. Danach werden Drehmöglichkeiten um einen Drehpunkt und das Spiegeln als Beweisidee genannt. Danach nennt die Klasse auf das Insistieren der Lehrperson hin, das Verschieben als Beweismöglichkeit. Nun werden die kongruenten Puzzleteile von a2, b2 und c2 mit jeweils derselben Farbe an der Wandtafel angemalt. In der Folge will die Lehrperson wissen, was nun entscheidend für diese Beweisführung des Satzes von Pythagoras ist. Ein Schüler nennt darauf, die Kongruenz von den Einzelteilen der Hpotenusenquadrate und Kathetenquadrate. In der Folge gibt die Lehrperson den Schülerinnen und Schülern den Auftrag, einen weiteren Beweis zu legen. Ein Schüler verteilt neue Umschläge. In jedem Umschlag stecken Puzzleteile für den Ergänzungsbeweis. Die Schülerinnen und Schüler haben den Auftrag, zwei große, deckungsgleiche Quadrate zu legen. Die Schülerinnen und Schüler arbeiten in Einzelarbeit. Die Arbeit baut auf dem Vorwissen der Schülerinnen und Schüler auf. Während dieser Schülerarbeitsphase zeichnet die Lehrperson zwei kongruente Quadrate an die Wandtafel, welche in der Folge als Vorlagen für den Ergänzungsbeweis dienen sollen. Nach einer Weile unterbricht die Lehrperson die Schülerarbeit für eine längere öffentliche Phase und zwei Schüler zeichnen zu Beginn je auf einem der Quadrate an der Wandtafel mit Linien die einzelnen Puzzleteile ein. In der Folge führt die Lehrperson das Gespräch zu den rechtwinkligen Dreiecke in diesen Darstellungen. Dabei stellt sie die Frage, wo diese rechtwinkligen Dreiecke zu finden sind. Die Schülerinnen und Schüler äußern sich dazu und bemalen die entsprechenden Seiten der rechtwinkligen Dreiecke (Hypotenuse, Kathete und Kathete) an der Wandtafel mit denselben Farben. Die Lehrperson beschriftet die Seiten jeweils mit Buchstaben und die Klasse nennt die Flächeninhalte der grossen Quadrate und bespricht die Flächeninhalte der Teilquadrate. In der Folge setzen die Schülerinnen und Schüler (weiter im öffentlichen Unterricht) die Flächen der grossen Quadrate gleich (2ab + c2 = a2 + b2 + 2ab). Die Gleichung wird aufgelöst und heraus kommt der Satz des Pythagoras. Die Lehrperson äußert, dass sie nun genug bewiesen hätten und die Puzzleteile werden in den Umschlägen wieder eingesammelt. Während der Zeit des Einsammelns zeichnet die Lehrperson ein rechtwinkliges Dreieck an die Wandtafel und beschriftet es mit Buchstaben. Eine Schülerin nennt die Formel dazu. Darauf erteilt die Lehrperson den Schülerinnen und Schülern den Auftrag dreizehn Teilaufgaben eines Arbeitsblattes zu lösen. Bei fünf Teilaufgaben geht es um das Finden der richtigen Formel, was den Schülerinnen und Schüler bereits bekannt ist. Bei einer weiteren Aufgabe mit mehreren Teilaufgaben, geht es darum in zwei großen Dreiecken verschiedenste rechtwinklige Dreiecke zu entdecken und verschiedene Seiten zu berechnen. Diese Aufgaben sind mehrschrittig und anspruchsvoll. Die Schülerinnen und Schüler arbeiten darauf in Einzelarbeit. Nach der Schülerarbeit werden die Ergebnisse der ersten fünf Teilaufgaben und die Anzahl gesuchter rechtwinkliger Dreiecke, in den nächsten Aufgaben, genannt und die Lehrperson gibt die Beendigung dieses Auftrags als Hausaufgaben auf. (Projekt)     less

  • Satzgruppe des Pythagoras (A15-P-1205-Lek1)

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. De...    more

    Zu Beginn der Stunde gibt die Lehrperson das Ziel dieser und der nächsten Lektionen bekannt. Darauf liest ein Schüler der Klasse einen Text vor, bei dem es um Feldvermessung geht. Der Bauer Albrecht soll dabei zwei seiner Felder gegen ein drittes tauschen, da die Bundesstrasse auf seinem Land vorbei führen soll. Die Klasse bespricht die Aufgabenstellung und die Lehrperson zeigt dazu die grafische Darstellung des Satzes von Pythagoras am Hellraumprojektor. In der Klasse wird anhand eines fragend-entwickelnden Lehr- und Lerngesprächs besprochen, ob dieser Feldertausch für den Bauer Albrecht lohnend sein kann. Ein Schüler schlägt vor, die Seiten der Quadrate zu messen und sie jeweils mal zu rechnen, um so die Fläche der einzelnen Quadrate zu erhalten. Die Lehrperson schreibt die Resultate an die Wandtafel. Die Lehrperson erzählt darauf der Klasse, dass der Bauer Albrecht zwei anderen Bauern von seinem Feldertausch berichtet. Die zwei anderen Bauern schreiben darauf dem Bürgermeister, denn sie wollen ebenso ihre Felder tauschen. Nun gibt die Lehrperson den Schülerinnen und Schülern den Auftrag, als Bürgermeister zu entscheiden, ob sie die Felder der zwei anderen Bauern eintauschen würden oder nicht. Die Schülerinnen und Schüler arbeiten zu zweit selbständig explorierend. Danach werden im öffentlichen Unterricht die Ergebnisse ausgetauscht. Die Klasse kommt darauf, dass die Gemeinde in einem Fall (stumpfwinkliges Dreieck - Verlängerung der Seite) profitieren würde und im anderen Fall (spitzwinkliges Dreieck - Verkürzung der Seite) ablehnen müssten, weil das nicht rentabel wäre. Die Lehrperson will darauf von der Klasse wissen, warum es Unterschiede gibt, obwohl die Grundflächen der zwei kleinen Quadrate identisch sind. In der Folge nennen die Schülerinnen und Schüler den Winkel, der ausschlaggebend ist für die Seite des großen Quadrates. Später wird der Satz des Pythagoras und der rechte Winkel von einem Schüler genannt. Darauf verteilt die Lehrperson den Schülerinnen und Schülern jeweils ein Blatt, an dessen Ecken die Schülerinnen und Schüler je ein Eselsohr machen sollen. So soll die Klasse überprüfen, ob die Behauptung stimmt, dass der Satz des Pythagoras nur in rechtwinkligen Dreiecken gilt. Die Schülerinnen und Schüler arbeiten alleine. Die Berechnung der Quadratflächen von den Seiten eines Dreiecks ist den Schülerinnen und Schüler bekannt von dieser Lektion. Die Klasse arbeitet an diesem Auftrag, bis es in die Pause klingelt. (Projekt)     less

  • Satzgruppe des Pythagoras (A16-P-1208-Lek1)

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll ein...    more

    Die Lektion beginnt mit einigen organisatorischen Angaben. Dann liest die Lehrperson einen ersten Teil der Hinführungsaufgabe des Bauern Piepenbrink vor: In einer Gemeinde soll eine Umfahrungsstraße gebaut werden. Da zwei quadratische Felder des Bauern Piepenbrink genau in der Bebauungszone liegen, will ihm die Gemeinde dafür ein einziges größeres quadratisches Feld überlassen. Die Lehrperson legt eine Folie auf den Hellraumprojektor, auf der zu sehen ist, wie die Felder liegen: Sie bilden die Pythagorasfigur. Eine Schülerin misst und berechnet die Quadratflächen und stellt fest, dass die kleinen Quadrate miteinander den selben Flächeninhalt haben, wie das große. Dann liest die Lehrperson weiter aus der Geschichte vor: Bauer Piepenbrink ist zufrieden mit dem Tausch und erzählt davon am Stammtisch. Seine beiden Kollegen, Bauer Plattfuss und Bauer Grossmaul, besitzen ähnliche quadratische Felder und wollen die auch gegen ein einziges großes Feld eintauschen. Nun sehen die Schülerinnen und Schüler an der Leinwand zuerst die Felder von Bauer Plattfuss: Die drei Quadrate sind um ein stumpfwinkliges Dreieck angeordnet. Wieder werden die Flächen der Quadrate berechnet und festgestellt, dass die Fläche des großen Quadrats größer ist als die der beiden kleinen Quadrate zusammen. Auch die Felder von Bauer Grossmaul werden vermessen und ihre Flächen berechnet. Da bei ihm die Felder um ein spitzwinkliges Dreieck angeordnet sind, ist die Fläche der beiden kleineren Quadrate zusammen natürlich größer als die des großen Quadrats. Die Lehrperson teilt die drei Pläne an die Schülerinnen und Schüler aus, die nun in Gruppen darüber beraten sollen, woran es liegt, dass sich beim einen Bauer der Tausch lohnt und beim andern nicht, denn bis jetzt haben sich die Schülerinnen und Schüler ausschließlich mit den Quadraten und nicht mit den eingeschlossenen Dreiecken beschäftigt. Nach angeregten Diskussionen sammelt die Lehrperson die Erkenntnisse der Schülerinnen und Schüler im Plenum. Den meisten Schülerinnen und Schüler ist aufgefallen, dass das Dreieck zwischen den Feldern des Bauern Piepenbrink rechtwinklig ist und dass darum die Flächen der beiden kleinen Feldern zusammen gleich groß sein könnten, wie die Fläche des angrenzenden großen quadratischen Feldes. Um diese Erkenntnis zu überprüfen, messen und vergleichen die Schülerinnen und Schüler selbständig verschiedene rechtwinklige Dreiecke, die auf einem von der Lehrperson ausgeteilten Blatt abgebildet sind. Vor der Pause bespricht die Lehrperson mit der Klasse, ob durch das Messen und Berechnen die Erkenntnisse, nämlich dass die Quadrate über den Katheten zusammen gleich groß sind, wie das Hypotenusenquadrat, bzw. dass wenn eine Quadratfläche die selbe Fläche hat, wie die Flächen zwei anderer Quadrate zusammen, die eingeschlossene Figur ein rechtwinkliges Dreieck sein muss, die aus der Piepnbrink-Geschichte hervorgegangen sind, bekräftigt wurden und fasst die Erkenntnis, dass also in einem rechtwinkligen Dreieck die Summe der Flächen der Kathetenquadraten gleich der Flächen des Hypotenusenquadrats ist, noch einmal zusammen. (Projekt)    less

  • Satzgruppe des Pythagoras (B01-P-2101-Lek1)

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler...    more

    Die Lektion beginnt mit wenigen organisatorischen Informationen. Nach einer Einstimmung mit Bildern von Bauwerken der alten Ägypter und Römer, äußern sich die Schülerinnen und Schüler spontan. Ausgehend von der Frage wie „draußen auf dem Feld“ im rechten Winkel gebaut werden könne, zeigt die Lehrperson, dass mit einer Schnur ein rechtwinkliges Dreieck entsteht, wenn die Längen der drei Schnurabschnitte im Verhältnis drei, vier und fünf zueinander stehen. Danach fordert die Lehrperson die Schüler und Schülerinnen auf, in Gruppen zu diskutieren und herauszufinden wie die Zahlen der pythagoräischen Zahlentripeln mathematisch zusammenhängen. Dazu wird ein Blatt mit verschiedenen Zahlentripeln abgegeben. An einem Gruppentisch ist der Satz des Pythagoras bereits bekannt. Diese Schülerinnen und Schüler werden nun auf die anderen Gruppen verteilt, um so ihr Wissen an den Rest der Klasse weiterzugeben. Um die Aussagen der Schülerinnen und Schüler zu bestätigen, stellt die Lehrperson den Satz des Pythagoras an der Wandtafel mit einem roten Hypotenusen- und grünen Kathetenquadraten graphisch dar. Danach berechnen die Schülerinnen und Schüler mit dem neu gelernten Satz selbständig die fehlenden Seiten von verschiedenen rechtwinkligen Dreiecken, ohne dass die Lehrperson vorgezeigt hat, wie solche Aufgaben zu lösen sind. Nachdem die Schülerinnen und Schüler Gelegenheit hatten, ihre Resultate zu korrigieren, erhalten sie ein Blatt, auf dem sie die Pythagorasfigur entsprechend der Wandtafeldarstellung anmalen und in ihr Theorieheft einkleben. Danach werden in Stillarbeit weitere Dreiecksseiten berechnet und kontrolliert. Um die Lektion abzurunden, wiederholt die Lehrperson vor der Pause das in dieser Lektion Gelernte. (Projekt)    less

  • Satzgruppe des Pythagoras (B07-P-2107-Lek1)

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will mit den Lernenden den Satz des Pythagoras kennenlernen und schauen, wie Pythagoras zu dieser Erkenntnis g...    more

    Zu Beginn der Lektion gibt die Lehrperson das neue Thema bekannt. Sie will mit den Lernenden den Satz des Pythagoras kennenlernen und schauen, wie Pythagoras zu dieser Erkenntnis gelangte. Problemorientiert entwickelt die Lehrperson mit der Klasse den Satz von Pythagoras. Sie lässt die Lernenden auf dem verteilten Blatt ein Quadrat mit einer vorgegebenen Länge zeichnen. Das rechtwinklige Dreieck, welches sie über der oberen Kante mit Hilfe des Thaleskreises konstruieren sollen, lässt die Lehrperson die Schülerinnen und Schüler frei wählen, damit zu einem späteren Zeitpunkt bewiesen werden kann, dass der Satz von Pythagoras in jedem rechtwinkligen Dreieck Gültigkeit hat. Über den Katheten des rechtwinkligen Dreiecks lässt die Lehrperson die Lernenden die Kathetenquadrate einzeichnen. Während die Schülerinnen und Schüler in Einzelarbeit die drei entstandenen Quadrate einfärben, ermuntert die Lehrperson diejenigen Schülerinnen und Schüler, die schon fertig sind, sich zu überlegen, was wohl Pythagoras herausgefunden hat. Nach dieser Einzelarbeit nennt ein Schüler die Idee, dass die beiden kleinen Quadrate zusammen die gleiche Fläche haben wie das große Quadrat. Die Lehrperson übernimmt diesen Gedanken und erarbeitet gemeinsam mit den Schülerinnen und Schüler allgemeine Formulierungen. Die Lehrperson kann nun folgende Gleichung an die Wandtafel schreiben: c2=b2+a2. Zu dieser Formel lässt die Lehrperson die Schülerinnen und Schüler einen Zerlegungsbeweis ausführen. Sie lässt die Lernenden die Quadrate über den Katheten in zwei, beziehungsweise drei Flächen einteilen. Die so entstandenen Stücke schneiden die Schülerinnen und Schüler aus und versuchen diese im Quadrat über der Hypotenuse selbständig entdeckend auszulegen. Wem dies gelungen ist, hilft anderen. Während dieser Schülerarbeitsphase legt die Lehrperson als Hilfe auf dem Hellraumprojektor eine mögliche Anordnung der Flächen auf dem Hypotenusenquadrat auf. Nachdem jeder Lernende die Möglichkeit hatte, eine Lösung zu finden, verteilt die Lehrperson ein Theorieblatt, um die eben gelernten Inhalte zu vertiefen. Jede Schülerin und jeder Schüler erhält Gelegenheit, das Blatt zu studieren. Danach werden in der Klasse die Begriffe "Kathete" und "Hypothenuse" erörtert. Das Theorieblatt enthält einen weiteren Beweis, den die Lehrperson aus Zeitmangel auf die nächste Stunde verschiebt. Nachdem eine Schülerin den Satz nochmals laut vorgelesen hat, zeigt die Lehrperson anhand eines Zahlenbeispiels, wie man mit dem Satz von Pythagoras Seiten im rechtwinkligen Dreieck berechnen kann. Sie zeigt, wie man aus den beiden Katheten die Hypothenuse berechnen kann. Im Anschluss daran, lösen sie gemeinsam drei ähnliche einschrittige Aufgaben. Die Lehrperson schließt die Stunde, indem sie die Hausaufgaben bekannt gibt. (Projekt)    less


     1     
Refine your search:


Imprint | Privacy Policy | Accessibility | BITV-Feedback | © 2022 DIPF | Leibniz Institute for Research and Information in Education