DE | EN
Logo fdz-Bildung
Suche Forschungsdaten Daten des FDZ Bildung: Suchen

Datenbestand des FDZ Bildung

Sie können den Datenbestand des FDZ Bildung anhand von individuellen Suchbegriffen durchsuchen oder die Gesamtliste der vorhandenen Forschungsdaten mit Hilfe der angebotenen Filter einschränken.

 
  • In der Suche im Datenbestand werden folgende Inhalte durchsucht: Titel, Thema, Unterrichtsfach, Abstract und Schlagwörter, Analyseeinheit, Art und Ort der Aufzeichnungseinheiten, Titel der zugehörigen Studie und Erhebung.
  • Mehrere Suchbegriffe werden automatisch mit ODER verknüpft. Eine Verknüpfung mehrerer Suchbegriffe mit UND ist über die Checkbox "alle Wörter" möglich.
  • Mehrere Suchbegriffe müssen mit Leerzeichen getrennt werden.
  • Groß- und Kleinschreibung bei Suchbegriffen wird nicht unterschieden.
  • Trunkierung: Suchbegriffe werden nicht automatisch trunkiert. Möglich ist dies durch Verwendung von * oder %. (Bspw. kann man über Mathematik* auch Begriffe wie Mathematikunterricht oder Mathematikkompetenz finden).
  • Phrasensuche: Es ist möglich, mit einer exakten Kombination von Suchbegriffen zu suchen. Dazu sind die Begriffe in Anführungszeichen zu setzen (z.B. "Teamarbeit im Unterricht").

zurücksetzen

Suchanfrage: KATHETENSATZ (Filter: Schlagwörter)
Anzahl der Treffer: 10
     1     
  • Satzgruppe des Pythagoras (A17-P-1218-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck...    mehr

    Die Lektion beginnt mit einigen organisatorischen Angaben und der Bekanntgabe des neuen Themas: die Satzgruppe des Pythagoras. Am Hellraumprojektor werden im rechtwinkligen Dreieck die üblichen griechischen Bezeichnungen festgelegt und von den Schülerinnen und Schülern in ihr Theorieheft übernommen. Anschließend zeigt die Lehrperson die drei Dreiecke, die entstehen, wenn ein großes rechtwinkliges Dreieck durch die Höhe über der Hypotenuse in zwei kleine Dreiecke unterteilt wird, nebeneinander und behauptet, dass diese ähnlich sind. Auf Grund dieser Aussage nennen die Schülerinnen und Schüler den Ähnlichkeitssatz, der auf diese Behauptung zutrifft und bestätigen so die Aussage der Lehrperson. Auch diese Dreiecke werden von den Schülerinnen und Schülern in ihr Theorieheft übernommen, der Ähnlichkeitssatz dazugeschrieben. Nun stellt die Klasse verschiedene, ausgewählte Verhältnisse zwischen den Seiten der drei Dreiecke auf. Aus diesen Verhältnisgleichungen wird an der Wandtafel der Kathetensatz errechnet und anschließend von der Lehrperson, Schülerinnen und Schülern in Worte gefasst. Alles was neu an der Wandtafel erarbeitet wurde, schreiben und zeichnen die Schülerinnen und Schüler ab. Anschließend nennen die Schülerinnen und Schüler den Kathetensatz für verschiedene vorgegebene rechtwinklige Dreiecke mit unterschiedlichen Seitenbezeichnungen. Schließlich besprechen sie im Plenum, was von einem rechtwinkligen Dreieck ausgerechnet werden kann, wenn die Hypotenuse und ein Hypotenusenabschnitt gegeben ist. In Stillarbeit berechnen die Schülerinnen und Schüler zwei solche Aufgaben, welche vor dem Ende der Lektion in der Klasse besprochen werden. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A17-P-1218-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass sich die Klasse heute noch einmal mit dem Kathetensatz und dem Höhensatz auseinandersetzen und der Satz des Pythagoras Teil ...    mehr

    Zu Beginn der Lektion gibt die Lehrperson bekannt, dass sich die Klasse heute noch einmal mit dem Kathetensatz und dem Höhensatz auseinandersetzen und der Satz des Pythagoras Teil der nächsten (nicht gefilmten) Lektion sein wird. Die Lehrperson zeichnet an der Wandtafel ein spitzwinkliges Dreieck samt Höhe und Bezeichnungen und fordert die Schülerinnen und Schüler auf, für dieses Dreieck den Kathetensatz zu formulieren. Promt fallen einige Schülerinnen und Schüler auf die Falle herein. Schließlich wenden einige Schülerinnen und Schüler ein, dass die beiden Sätze nur im rechtwinkligen Dreieck gelten. Dann repetieren sie die ausformulierten Formen der beiden Sätze. Danach werden die Hausaufgaben kontrolliert. Der weitere Verlauf der Lektion steht unter dem Titel "Anwendung des Kathetensatzes und Höhensatzes", welchen die Schülerinnen und Schüler in ihr Heft schreiben. Als erstes gibt die Lehrperson eine theoretische Anleitung für die graphische Umwandlung eines Quadrates in ein flächengleiches Rechteck, von dem eine Seite gegeben ist, mit Hilfe des Kathetensatzes. Anschließend an diese Einleitung wandeln die Schülerinnen und Schüler selbständig zwei gegebene Quadrate in flächengleiche Rechtecke um. Analog zu dieser ersten Anwendungssequenz zeig die Lehrperson vor, wie mit Hilfe des Höhensatzes ein beliebiges Rechteck in ein flächengleiches Quadrat umgewandelt werden kann. Anschließend konstruieren die Schülerinnen und Schüler auch diese Umwandlung mit einem Zahlenbeispiel. Als Hausaufgabe sollen die Schülerinnen und Schüler diese beiden Konstruktionsarten mit Hilfe des Buches repetieren. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A18-P-1222-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Informationen ruft sich die Klasse ein Verfahren ins Gedächtnis, mit dem sie gelernt hat die Wurzel aus zwei zu konstruieren. Anschließend sollen die Sc...    mehr

    Nach einigen organisatorischen Informationen ruft sich die Klasse ein Verfahren ins Gedächtnis, mit dem sie gelernt hat die Wurzel aus zwei zu konstruieren. Anschließend sollen die Schülerinnen und Schüler zu zweit versuchen die Wurzel aus drei zu konstruieren. Nach fünf Minuten präsentieren die Schülerinnen und Schüler ihre Lösungsvorschläge an der Wandtafel. Wie erwartet, kam niemand auf einen befriedigenden Lösungsweg. Um ein Verfahren zu erarbeiten, wie also die Wurzel aus einer beliebigen Zahl konstruiert werden kann, verwandelt die Lehrperson an der Wandtafel als erstes ein Quadrat in ein Rechteck, von dem eine Seite gegeben ist. Dabei bezieht sie die Schülerinnen und Schüler in ein Lehr-Lerngespräch ein. Die Lehrperson unterbricht die Konstruktion, nachdem sie das Quadrat in ein Parallelogramm umgewandelt hat, damit die Schülerinnen und Schüler die Konstruktion so weit in ihr Theorieheft übernehmen können. Anschließend wird die Konstruktion an der Wandtafel zu Ende geführt. Als letztes werden die Flächen des Ausgangsquadrates und des entstandenen Rechtecks berechnet und verglichen. Nun will die Lehrperson auf die gleiche Weise ein Rechteck in ein Quadrat verwandeln, unterbricht den Unterricht aber für eine kleine Pause. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A18-P-1222-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lehrperson repetiert kurz, was in der letzten Stunde gemacht wurde. Nun sollen sich die Schülerinnen und Schüler wieder in Zweiergruppen überlegen, wie nun umgekehrt ein Rechte...    mehr

    Die Lehrperson repetiert kurz, was in der letzten Stunde gemacht wurde. Nun sollen sich die Schülerinnen und Schüler wieder in Zweiergruppen überlegen, wie nun umgekehrt ein Rechteck in ein Quadrat umgeformt werden kann. Die Schülerinnen und Schüler stellen mit Hilfe der in der letzten Lektion gemachten Konstruktion fest, dass die Seite des gesuchten Quadrates die Kathete eines rechtwinkligen Dreiecks ist, dass über der längeren Seite des Rechtecks errichtet wurde. An der Wandtafel präsentieren sie nun ihre Ideen, wie der Scheitelpunkt des gesuchten rechtwinkligen Dreiecks gefunden werden kann. Schließlich verweist die Lehrperson auf die Konstruktion der letzten Lektion, um den Schülerinnen und Schülern die richtige Methode zu demonstrieren. Wie nun die Lösung gefunden wurde, werden die gemachten Arbeitsschritte in der Klasse wiederholt und die Schülerinnen und Schüler übernehmen auch diese Umwandlung in ihr Theorieheft. Nun kehrt die Lehrperson wieder zum Anfangsproblem - der Konstruktion der Wurzel aus drei - zurück. Mit der gelernten Methode ist diese Aufgabe von der Klasse nun zu lösen. Als Hausaufgabe sollen die Schülerinnen und Schüler die Wurzel aus sechs oder sieben konstruieren. Zuletzt werden die einzelnen Teile im rechtwinkligen Dreieck einheitlich benannt. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A18-P-1222-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Lektion werden die Hausaufgaben besprochen und die in der letzten Lektion gelernten Lösungswege repetiert. Dann macht die Klasse einen Hefteintrag mit dem Titel "der ...    mehr

    Zu Beginn der Lektion werden die Hausaufgaben besprochen und die in der letzten Lektion gelernten Lösungswege repetiert. Dann macht die Klasse einen Hefteintrag mit dem Titel "der Kathetensatz des Euklid". In einer Skizze wird der Satz dargestellt, darunter schreiben die Schülerinnen und Schüler, wie im vorausgehenden Unterrichtsgespräch herausgefunden: b2=cq. Schließlich wird der Kathetensatz in Worten formuliert und auch als Formel für die Kathete a aufgeschrieben. Dann überprüfen die Schülerinnen und Schüler zu zweit an den individuellen Skizzen die Aussage des Satzes. Nun stellt die Lehrperson den Satz des Pythagoras als Behauptung auf. Die Klasse überprüft auch diese Aussage an den individuellen Skizzen. Da dies - wie die Lehrperson sagt - aber noch nicht ausreicht, um seine Richtigkeit zu bestätigen, beweist sie die Aussage dadurch, indem sie veranschaulicht, dass die Kombination der beiden Kathetensätze den Satz des Pythagoras ergibt. Schließlich formuliert die Klasse den Satz des Pythagoras in Worten. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A19-P-1223-Lek1)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dies...    mehr

    Nach einigen organisatorischen Angaben zeigt die Lehrperson am Hellraumprojektor eine graphisch vereinfachte Darstellung von einem Ausschnitt eines Industriedaches. Eine Kopie dieser Darstellung teilt sie auch an die Schülerinnen und Schüler aus. Ihre Aufgabe ist es, zu zweit den Lösungsweg zur Berechnung der Länge der für die Herstellung eines solchen Daches benötigten Dachsparren zu finden, wenn das Dreieck, das die beiden Dachschrägen und die Parallele zum Boden bilden, im Giebel rechtwinklig ist. Auch die Länge eines solchen Teildaches und der Punkt, wo dieses von der Höhe durch den Giebel geteilt wird, sind den Schülerinnen und Schülern bekannt. Nach etwa zehn Minuten wird im Plenum besprochen, auf was für Lösungsansätze die Schülerinnen und Schüler gekommen sind. Eine Schülerin schlägt vor, das Dreieck zu konstruieren und die Länge der Dachsparren durch Messen zu bestimmen. Auch fällt das Stichwort "Strahlensätze", woran die Lehrperson das weiterführende Lehr-Lerngespräch anknüpft. An der Wandtafel hängt die Lehrperson ein rechtwinkliges Dreieck aus braunem Papier auf und lässt einen Schüler die zwei Teildreiecke aus blauem Papier, die durch das Einzeichnen der Höhe entstünden, exakt darüber hängen. Dieser Schüler ist es auch, der behauptet, alle diese Papierdreiecke seien zueinander ähnlich. Dies wird durch die Lehrperson bestätigt und für die anderen Schülerinnen und Schüler durchsichtig gemacht. Nun hängt die Lehrperson ein weiteres zum braunen Dreieck identisches Papierdreieck an die Wandtafel. Ein Schüler hängt eines der blauen Dreiecke so auf das zweite braune, dass die Klasse sieht, wie der zweite Strahlensatz auf diese beiden Dreiecke angewendet werden kann. Die Lehrperson schreibt alle bekannten Grössen aus der Dachsparrenaufgabe in Zahlen, die unbekannten in Buchstaben auf die beiden Dreiecke. Mit diesen Angaben stellt die Klasse die Verhältnisgleichung auf und rechnet so die eine Kathete des braunen Dreiecks aus. Anschließend schreiben, zeichnen und kleben die Schülerinnen und Schüler den ganzen Lösungsweg von der Wandtafel ab. Dabei überlegen sie sich bereits den Lösungsweg zur Berechnung des anderen Dachsparrens. (Projekt)    weniger

  • Satzgruppe des Pythagoras (A19-P-1223-Lek2)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Nach der Pause zeigt ein Schüler, wie die Dreiecke gelegt werden müssen, dass der Strahlensatz zur Berechnung der anderen Kathete formuliert werden kann. Wieder wird an der Wandtaf...    mehr

    Nach der Pause zeigt ein Schüler, wie die Dreiecke gelegt werden müssen, dass der Strahlensatz zur Berechnung der anderen Kathete formuliert werden kann. Wieder wird an der Wandtafel die Verhältnisgleichung mit Zahlen und Buchstaben aufgestellt und so die Kathete berechnet. Nun zeichnet die Lehrperson an der Wandtafel ein neues rechtwinkliges Dreieck, deren korrekte Bezeichnung von der Klasse genannt wird. Mit Hilfe der Lehrperson werden nun die beiden Aufgaben mit den Dachsparren auf das neue Dreieck angewendet und so allgemein formuliert. So erhalten die Schülerinnen und Schüler die Formeln der beiden Kathetensätze. Mit dieser neu erworbenen Formel berechnet die Klasse mit Hilfe der Lehrperson die Hypotenuse eines Dreiecks, von dem eine Kathete und der dazugehörende Hypotenusenabschnitt bekannt sind. Anschließend berechnen die Schülerinnen und Schüler selbständig weitere Übungsaufgaben mit dem Kathetensatz. Nachdem diese Übungsaufgaben besprochen wurden, skizzieren eine Schülerin und ein Schüler zu dem allgemeinen rechtwinkligen Dreieck die graphische Darstellung der beiden Kathetensätze. Als Hausaufgabe soll diese Skizze sauber ins Theorieheft konstruiert werden. Mit dieser Aufgabe können die Schülerinnen und Schüler bis zum Ende der Lektion schon beginnen. (Projekt)     weniger

  • Satzgruppe des Pythagoras (A19-P-1223-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Zu Beginn der Stunde legt die Lehrperson eine Folie auf, auf der einige Behauptungen zu den Kathetensätzen aufgeschrieben sind. Die Schülerinnen und Schüler bewerten nun in der Klass...    mehr

    Zu Beginn der Stunde legt die Lehrperson eine Folie auf, auf der einige Behauptungen zu den Kathetensätzen aufgeschrieben sind. Die Schülerinnen und Schüler bewerten nun in der Klasse, ob die Aussagen richtig oder falsch sind. Anschließend legt die Lehrperson eine sauber konstruierte Pythagorasfigur auf den Hellraumprojektor, auf der die Kathetensätze graphisch erkennbar sind. An Hand dieser Darstellung werden die Formeln der Kathetensätze ins Gedächtnis gerufen. Dann formulieren die Schülerinnen und Schüler im Plenum die Kathetensätze für unüblich beschriftete rechtwinklige Dreiecke. Die Lehrperson behauptet, dass im rechtwinkligen Dreieck gelte, dass die Summe der Flächen der Kathetenquadrate gleich der Fläche des Hypotenusenquadrates ist. Dies sollen die Schülerinnen und Schüler an Hand ihres Vorwissens nun selbständig beweisen. Nachdem die Schülerinnen und Schüler etwa zehn Minuten Zeit hatten, zu zweit diesen Beweis zu führen, geben sie ihre Erkenntnisse in der Klasse bekannt. Einige Schülerinnen und Schüler haben Zahlenbeispiele berechnet, eine Schülerin zeigt an der Wandtafel eine allgemeine Umformug der Kathetensätze in den Satz des Pythagoras. Da die Ausführungen bei der Klasse und der Lehrperson auf Unverständnis stoßen, führt ein Schüler die von der Schülerin angefangene Umformung zu Ende. Aus dem Buch liest eine Schülerin etwas über die Person Pythagoras vor. Anschließend wird der Satz des Pythagoras in der Klasse in Worten formuliert. Vor dem Ende der Lektion wird die Hypotenuse eines rechtwinkligen Dreiecks, dessen Katheten bekannt sind, in der Klasse berechnet. (Projekt)    weniger

  • Satzgruppe des Pythagoras (B12-P-2112-Lek3)

    Bestandteil von: Pythagoras - Videogestützte Unterrichtsstudie / Unterrichtsbeobachtung (Daten): Pythagorasmodul

    Die Lehrperson beginnt die dritte Stunde der Pythagorasreihe mit einem Ausblick auf die Lektion, wobei sie Ziele, Thema, Inhalte und Arbeitsformen bekannt gibt. Als Repetition und ...    mehr

    Die Lehrperson beginnt die dritte Stunde der Pythagorasreihe mit einem Ausblick auf die Lektion, wobei sie Ziele, Thema, Inhalte und Arbeitsformen bekannt gibt. Als Repetition und Aktivierung des Vorwissen bearbeiten die Schülerinnen und Schüler zwei Kleinaufträge, die am Hellraumprojektor notiert sind. Zum einen wird verlangt, dass die Schülerinnen und Schüler drei kurze Sätze zur Person des Pythagoras und zu seiner Geschichte schreiben, zum anderen sollen die Schülerinnen und Schüler die Erkenntnisse der letzten zwei Geometriestunden in drei Sätzen möglichst kurz und prägnant zusammen fassen. Die Lernenden arbeiten zu zweit. Die Resultate werden in der Klasse ausgetauscht. Danach legt die Lehrperson eine farbige Folie auf den Hellraumprojektor. Es ist die grafische Darstellung des Kathetensatzes (= Satz des Euklid). Die Klasse sammelt Beobachtungen und Ideen im Sinne eines Brainstormings. Darauf erklärt die Lehrperson der Klasse, dass Euklid den Satz des Pythagoras weiter entwickelt hat, indem er die Beweisführung des Kathetensatzes entwickelte. Diese Beweisführung zeigt und erklärt die Lehrperson der Klasse. Als nächstes gibt die Lehrperson den Schülerinnen und Schülern Hinweise und eine Anleitung wie sie die in der Folge zu bearbeitende Aufgaben darzustellen haben. Darauf verteilt sie ein Aufgabenblatt. Gemeinsam wird eine Aufgabe erarbeitet, bei der es um die Berechnung der Hypotenuse geht. Die Lehrperson schreibt die Aufgabenstellung auf die Folie des Hellraumprojektors. In Einzelarbeit berechnen darauf die Schülerinnen und Schüler die Aufgabe. Danach wird die Aufgabe gemeinsam besprochen. Die Lehrperson zeigt das schrittweise Vorgehen am Hellraumprojektor vor und die Schülerinnen und Schüler übernehmen die Darstellung in ihre Hefte. Zum Schluss de Stunde gibt die Lehrperson die Hausaufgaben auf und regelt die Sitzordnung für die nächste Stunde. (Projekt)    weniger

  • Unterrichtsaufzeichnung (S352_obs009)

    Bestandteil von: TALIS - Videostudie Deutschland / Unterrichtsbeobachtung (Daten): TALIS

    Thema dieser Unterrichtsstunde ist der Katheten-Satz und der Satz des Pythagoras. Zu Beginn der Stunde wiederholt eine Schülerin die Inhalte der letzten Unterrichtsstunde zur Berec...    mehr

    Thema dieser Unterrichtsstunde ist der Katheten-Satz und der Satz des Pythagoras. Zu Beginn der Stunde wiederholt eine Schülerin die Inhalte der letzten Unterrichtsstunde zur Berechnung von Gitterpunkten. Im Anschluss daran bespricht die Klasse die Hausaufgaben. Währenddessen schreibt der Lehrer den Plan für die aktuelle Unterrichtsstunde an die Tafel. Danach konstruiert eine Schülerin an der Tafel aus einem Rechteck ein flächengleiches Rechteck. Der Lehrer erklärt dazu, wie man eine Aufgabe mit einem Zirkel und einem Lineal bearbeiten kann. Ein Schüler und zwei Schülerinnen gehen an die Tafel und ergänzen die Ausführungen der Schülerin. Anschließend werden im Klassengespräch die Beweise diskutiert, dass das Rechteck und das Quadrat die gleichen Flächeninhalte haben. Es entstehen Gespräche. Die Klasse bearbeitet in Partnerarbeit eine Übung zum Katheten-Satz und zum Satz des Pythagoras. Der Lehrer geht durch die Klasse und gibt Hilfestellung. Eine Schülerin schreibt während der Bearbeitungsphase ihre Ergebnisse an die Tafel an. Zudem entstehen zwischen dem Lehrer und einer Schülerin Gespräche zum Thema „Fehler-machen-können“. Mehrere Schülerinnen und Schüler verlassen während des Unterrichts den Klassenraum, um in einem anderen Raum zu arbeiten. Anschließend werden die Zwischenergebnisse im Klassengespräch kontrolliert. Teilweise visualisiert der Lehrer die Ergebnisse an der Tafel. Zum Schluss der Stunde erteilt der Lehrer die Hausaufgaben und verweist auf die nächste Klassenarbeit. (DIPF/gf)    weniger


     1     
Filtern nach:


Impressum | Datenschutz | Barrierefreiheit | BITV-Feedback | © 2014 DIPF | Leibniz-Institut für Bildungsforschung und Bildungsinformation